Pipe Fitters Handbook April 2013 For the most current product/pricing information on Anvil products, please visit our website at www.anvilintl.com # **PIPE FITTINGS** #### **HISTORY** For over 150 years, Anvil has been a trusted name in piping solutions by consistently providing quality products, service, and support to the PVF industry. Our ability to provide cost-efficient piping packages that are tailored to individual markets is unmatched in the industry. From plumbing, mechanical, and fire protection, to mining, oil and gas, our innovative responses are designed to meet your specific demands. ## **PRODUCTS** Our manufacturing facilities produce an unrivaled package of piping products, while setting a world-wide industry standard for quality and dependability. Our ISO certified facilities use recycled materials in the manufacturing of our product as well as being a proud member of the USGBC. #### DISTRIBUTION CHANNEL The wholesaler has always been the key to Anvil's business. Our dedication to the wholesale trade is the driving force for our services and these relationships remain a primary focus of Anvil's innovation. Our value-added services including a proprietary suite of inventory management tools signifies a strong commitment to our customers needs. #### **CUSTOMER SERVICE** Having major distribution centers located throughout North America, you can count on getting the product you need - when you need it. Customer satisfaction has always been Anvil's #1 objective. Our experienced Sales and Customer Service Teams are knowledgeable and eager to serve our customers, validating our company's motto "Building Connections that Last." # TABLE OF CONTENTS # **BOLT TEMPLATES** | Standard Cast Iron Companion Flanges and Bolts | 58 | |--|--------| | Extra Heavy Cast Iron Companion Flanges and Bolts | 58 | | Bolt Dimensions for 150 to 300 LB. Steel Flange | | | Bolt Dimensions for 400 to 600 LB. Steel Flange | | | Bolt Template for Drilling Flanged Fittings | | | Bolt Template for Drilling Extra Heavy Flanged Fittings | 62 | | GENERAL WELDING INFORMATION | | | Coated Arc Welding Electrodes - Types & Styles | | | Physical Properties of E60 & E70 Series Electrodes | | | Basic Arc & Gas Welding Symbols | | | | 03 | | CONVERSIONS | | | Decimal Equivalents of Fractions (inch/mm) | | | Minutes Converted to Decimals of a Degree | | | Unit Conversions | | | | 00 | | DROP NIPPLE AND TEE-LET INSTALLATION | (0 | | Installation and Assembly - Merit® Eliminator Adjustable Drop Nipple
Installation and Assembly - Merit® Weld Miser™ Tee-Let | | | , | 70-72 | | PIPE THREAD STANDARDS AND INFORMATION | | | Installation and Assembly - General Assembly of Threaded Fittings | | | Pipe Nipple Thread Engagement | | | • | /4-/3 | | FORGED STEEL AND OIL COUNTRY FITTING DATA | 7. | | Forged Steel Anvilets - Installation and Pressure Ratings | | | Current API Thread Standards for Oil Country Fittings | | | · · · · · · · · · · · · · · · · · · · | / / | | BEAM DIMENSIONS | 70 | | Beam Dimensions - American Standard Channels | | | Beam Dimensions - W Shapes | | | · | / / | | HANGER SPACING AND HANGER PRODUCT | 00 | | A Typical Pipe Hanger Specification | | | PVC Pipe Support Spacing | | | CPVC Pipe Support Spacing | | | Pipe Hanger Pictorial | | | GENERAL INFORMATION | | | Alignment of Pipe | 97-93 | | Tap and Drill Sizes | | | Drill Sizes for NPT Pipe Taps | | | Symbols for Pipe Fittings | 94-98 | | Glossary of Terms and Abbreviations | 99-104 | # 1. Check & Lubricate Gasket Check gasket to be sure it is compatible for the intended service. Apply a thin coating of Gruvlok lubricant to outside and sealing lips of the gasket. Be careful that foreign particles do not adhere to lubricated surfaces. #### 2. Gasket Installation Slip the gasket over the pipe end making sure the gasket lip does not overhang the pipe end. On couplings 10" and larger it may be easier to turn the gasket inside out then lubricate and slide the gasket over the pipe end as shown. # 3. Alignment After aligning the two pipe ends, pull the gasket into position centering it between the grooves on each pipe. Gasket should not extend into the groove on either pipe. On couplings 10" and larger, flip or roll the gasket into centered position. #### 4. Housings Place the coupling housing halves over the gasket making sure the housing keys engage the grooves. Insert bolts and turn nuts finger tight. # 5. Tighten Nuts Tighten the nuts alternately and equally to the specified bolt torque.* The housing bolt pads must make metalto-metal contact. **CAUTION:** Uneven tightening may cause the gasket to pinch. # 6. Assembly is Complete Visually inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves and the bolt pads are in firm even metalto-metal contact on both sides of the coupling. Drop Nipple and Tee-Let Installation CAUTION: Proper torquing of coupling bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. CAUTION: Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. * Refer to page 28 with bolt torque table Gruvlok # Figures 7400 & 7401 Couplings # 1. Check & Lubricate Gasket Check gasket to be sure it is compatible for the intended service. Apply a thin coating of Gruvlok lubricant to outside and sealing lips of the gasket. Some applications require lubrication of the entire gasket surface. Be careful that foreign particles do not adhere to lubricated surfaces. #### 2. Gasket Installation Slip the gasket over the pipe end making sure the gasket lip does not overhang the pipe end. On couplings 10" and larger it may be easier to turn the gasket inside out then lubricate and slide the gasket over the pipe end as shown. # 3. Alignment After aligning the two pipe ends, pull the gasket into position centering it between the grooves on each pipe. Gasket should not extend into the groove on either pipe. On couplings 10" and larger, flip or roll the gasket into centered position. #### 4. Housings Remove one nut and bolt and loosen the other nut. Place one housing over the gasket, making sure the housing keys fit into the pipe grooves. Swing the other housing over the gasket and into the grooves on both pipes, making sure the tongue and recess of each housing is properly mated. Reinsert the bolt and run-up both nuts finger tight. NOTE Sizes 16" and larger are cast in multiple segments. To install the larger sizes align the tongue and pocket of the couplings appropriately and tighten the nuts alternately to the specified bolt torque. When properly assembled there will be a small equal gap between the adjacent bolt pads. # 5. Tighten Nuts Securely tighten nuts alternately and equally to the specified bolt torque*, keeping the gaps at the bolt pads evenly spaced. **CAUTION:** Uneven tightening may cause the gasket to pinch. Gasket should not be visible between segments after bolts are tightened. # 6. Assembly is Complete Visually inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves. The bolt pads are to have equal gaps on each side of the coupling. CAUTION: Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. * Refer to page 28 with bolt torque table. CAUTION: Proper torquing of coupling bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. - 7001-2 & 7401-2 bolts must be lightly coated with Gruvlok Xtreme™ lube before installation. See chart for torque requirements. - Minimum wall pipe suitable for 14" 24": 7001-2 & 7401-2 roll grooved installation is 0.250" wall thickness. - Pipe preparation Grooved dimensions must conform to the Gruvlok Roll/Cut groove specification. # 1. Check & Lubricate Gasket Check gasket to be sure it is compatible for the intended service. Apply a thin coat of Gruvlok lubricant to outside and sealing lips of the gasket. Be careful that foreign particles do not adhere to lubricated surfaces. # 2. Gasket Installation Slip the gasket over the pipe end, making sure the gasket lip does not overhang the pipe end. # 3. Alignment After aligning the two pipe into position, centering it pipe. Gasket should not extend into the groove on ends together, pull the gasket between the grooves on each either pipe. #### 4. Housings Place each housing half on the pipe and into each groove making sure that the gasket does not slip out of position in between the pipe ends or groove. 11/8 #### 5. Bolts Apply a thin coat of Xtreme lube, or Gruvlok Standard Lube to the bolt threads. Tighten the nuts alternately and equally to the specified bolt torque. **CAUTION:** Uneven tightening may cause the gasket to pinch. # 6. Final Assembly Visually inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves, the bolt pads are in firm even metal-to-metal contact on both sides of the coupling, and gasket is not visible. > CAUTION: When using an impact wrench, verify that the torque output on the wrench is within the required
torque range. | ANSI SPECIFIED BOLT TORQUE | | | | |--|-------------|-----------|-----------| | Pipe Sizes Bolt Size Specified Bolt Torque Lubrication | | | | | In. | In. FtLbs – | | - | | 14 | 7/8 | 180 - 220 | | | 16 | 1 | 250 - 300 | Gruvlok | | 18 | 1 | 250 - 300 | Xtreme™ | | 20 | 11/6 | 375 - 425 | Lubricant | 375 - 425 24 # Figure 7011 Standard Coupling #### 1. Pipe Preparation Inspect the pipe ends making sure the criteria, in the Gruvlok Large Diameter Pipe Roll and Cut Groove Specifications, are met. #### 2. Gasket Installation Turn the gasket inside out and slide the gasket completely over one of the pipe ends. Turning the gasket inside out will reduce the stretching necessary to put the gasket into position. Ideally, approximately 75% of the pipe's gasket-sealing surface, (Dimension A) should be visible when the gasket is in proper position. This will aid in step 4. #### 3. Lubricate Gasket Lubricate the gasket sealing lips. The use of Gruvlok lubricants ensures compatibility between the lubricant and the gasket. # 4. Alignment Pull the two pipes into contact aligning the pipe ends. CAUTION: Be careful not to pinch ingers during this step. Working your way around the circumference of the pipe, flip the gasket toward the pipe end so that the proper side is facing out. The end of this procedure will result in the gasket snapping into place. Position the gasket centrally between the grooves of the two pipe ends. #### 5. Lubricate Gasket Lubricate the exterior surface of the gasket. This helps prevent pinching of the gasket during assembly. #### 6. Housings Secure the housings about the pipes making sure the coupling keys are engaged in the pipe end grooves. Hint: For horizontal assembly, place housing segment on top of the pipe to support the weight of the housing segment. Secure the adjacent housing with an oval neck track bolt and heavy hex nut and then rotate the secured housings, again balancing the weight of the housings on the top of the pipe. Continue this procedure for all segments. # Figure 7011 Standard Coupling Continued 7. Tighten Nuts Firmly torque each bolt. The specified minimum torque for each nut is 600 ft.-lbs. The specified maximum torque for each nut is 800 ft.-lbs. **8. Assembly is Complete** Installation of the Figure 7011 Standard Coupling is completed. **CAUTION:** Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. CAUTION: Proper torquing of coupling bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. Table of Contents # Figure 7402 SlideLOK® Rigid Coupling Installation # Ready for Installation - right out of the box Do not disassemble the SlideLOK™ Coupling. The Figure 7402 coupling is ready for installation. The bolt and gasket do not need to be removed. # 1. Pipe Preparation Pipe ends are to be rolled or cut grooved according to Anvil specifications. The pipe end must be smooth and free from metal burrs or projections. # 2. Gasket Preparation Ensure the gasket is suitable for the intended application by referring to the Anvil gasket compatibility chart. Apply a light coating of Gruvlok® Xtreme" Lubricant to exposed gasket surfaces. #### 3. Assembly The SlideLOK Figure 7402 may be installed by one of two methods. The preferred method depends on the type of pipe components being joined and their orientation. Please review both methods before installing. #### METHOD #1 Slide the SlideLOK coupling completely over the grooved pipe end. This will allow a clear and un-obstructed view of the pipe for correct alignment. - **A.** Slide the coupling on the pipe past the groove. The bolts and nuts can be hand tightened to position the coupling in place. - **B.** Align the mating pipe end. Align the two adjoining pipes together. - **C.** Slide the coupling back over the grooves so that the coupling keys are located over the respective grooves on both pipe ends. - **D.** Follow the instructions on fastening the coupling as shown in Step 4. Slide the SlideLOK™ coupling half way onto the pipe end or fitting. This will better accommodate fitting, and valve accessories during installation. - A. Slide the coupling on the fitting so that the groove and keys are aligned. - B. Bring the pipe end or fitting towards the coupling and insert so that the groove and coupling keys are aligned. - **C.** Hand tighten the nuts to correctly position the couplings keys over the respective grooved ends. - D. Follow the instructions on fastening the coupling as shown in Step 4. Weld Fitting and Table of Contents General Welding Information Conversions Drop Nipple and Pipe Thread # 4. Final Assembly The SlideLOK coupling is designed to achieve pad to pad (metal-to-metal contact) using either an impact wrench* or wrench. The intended torque range for the coupling is located in the Table 1. Securely tighten nuts alternately and equally until the housing halves are in metal-to-metal contact. # 5. Final Inspection Ensure the coupling is properly aligned in the grooves and the housing halves are in metal-to-metal contact, depicted in the picture above. | TABLE 1 – TORQUE RANGES | | | |-------------------------|-----------|--| | Sizes Torque | | | | In. | FtLbs | | | 2 - 4 | 80 - 100 | | | 5 - 6 | 100 - 130 | | * CAUTION: When using an impact wrench, verify that the output of the torque wrench is within the required torque range. It is recommended that a torque wrench be used for accurate assembly in order to obtain specified performance. # Figure 7402 SlideLOK® Rigid Coupling Continued Re-Installation # Reinstallation of the Figure 7402 SlideLOK™ Coupling The SlideLOK coupling is designed to be installed in the ready for installation assembly position once. After the initial assemble the following steps are to be taken to re-install the Fig. 7402 SlideLOK coupling. # 1. De-pressurize the System De-pressurize the system before removing the SlideLOK Coupling. Dis-assemble the couplings by removing the nuts, bolts and gasket from the housing halves. A wrench is required to overcome the epoxy used to secure the nuts on the bolts. # 2. Pipe Preparation Pipe ends are to be rolled or cut grooved according to Anvil specifications. The pipe end must be smooth and free from metal burrs or projections. # 3. Gasket Preparation Ensure the gasket is suitable for the intended application by referring to the Anvil gasket compatibility chart. A light coating of Gruvlok® XTreme® lubricant must be applied to the gasket prior to installation. # 4. Pipe Alignment and Gasket Installation Slide the gasket onto the pipe then align the two pipe ends together. Pull the gasket into position, centering it between the grooves on each pipe. Gasket should not extend into the groove on either pipe. # 5. Housing Assembly Place each housing halves on the pipe making sure the housing key fits into the groove. Be sure that the tongue and recess portions of the housing mate properly. Insert the bolts. # Figure 7402 SlideLOK® Rigid Coupling Continued Re-Installation # 6. Final Assembly The SlideLOK coupling is designed to achieve pad to pad (metal-to-metal contact) using either an impact wrench* or wrench. The intended torque range for the coupling is located in the Table 1. Securely tighten nuts alternately and equally until the housing halves are in metal-to-metal contact. # 7. Final Inspection Ensure the coupling is properly aligned in the grooves and the housing halves are in metal-to-metal contact, depicted in the picture above. | TABLE 1 – TORQUE RANGES | | | |-------------------------|-----------|--| | Sizes | Torque | | | In. | FtLbs | | | 2 - 4 | 80 - 100 | | | 5 - 6 | 100 - 130 | | * CAUTION: When using an impact wrench, verify that the output of the torque wrench is within the required torque range. It is recommended that a torque wrench be used for accurate assembly in order to obtain specified performance. # Incorrect Installation Examples **Excess Torque or Shallow Groove Dimension** Gruvlok # Figure 6400 Rigid Coupling - CTS Copper System The Fig. 6400 Coupling from Gruvlok is specially designed to provide a rigid pipe connection to meet the specific demands of copper tubing installation. Fast and easy swing-over installation of the rugged lightweight housing produces a secure, rigid pipe joint. Available with the EPDM flush gap style gasket as the standard gasket. # 1. Check & Lubricate Gasket Check the gasket to be sure it is compatible for the intended service. Apply a thin coating of Gruvlok® Xtreme Lubricant to the entire surface, both internal and external, of the gasket. Be careful that foreign particles do not adhere to the lubricated surfaces. 2. Gasket Installation Slip the gasket over one tube, making sure the gasket lip does not overhang the tube end. # 3. Alignment After aligning the two tube ends together, pull the gasket into position, centering it between the grooves on each tube. The gasket should not extend into the groove on either tube or between the tube ends. # 4. Housings Remove one nut and bolt and loosen the other nut. Place one housing over the gasket, making sure the housing keys fit into the tube grooves. Swing the other housing over the gasket and into the grooves on both tubes, making sure the tongue and recess of each housing is properly mated. Re-insert the bolt and run-up both nuts finger tight. # 5. Tighten Nuts Securely tighten nuts alternately and equally to the specified bolt torque, keeping the gaps at the bolt pads evenly spaced. Assembly is complete. Visually
inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves. The bolt pads are to have equal gaps on each side of the coupling. **NOTE:** Copper is a soft material, and in some cases, the bolt pads may come close to metal-to-metal contact. | ı | CAUTION: Uneven tightening may cause the gasket | |---|---| | ı | to pinch. The gasket should not be visible between | | ı | segments after the bolts are tightened. Proper | | ı | torquing of coupling bolts is required to obtain | | ı | specified performance. Over torquing the bolts may | | ı | result in damage to the bolt and/or casting which | | ı | could result in pipe joint separation. Under torquing | | ı | the bolts may result in lower pressure retention | | ı | capabilities, lower bend load capabilities, joint | | ı | leakage and nine joint senaration | | SPECIFIED BOLT TORQUE | | | |-----------------------|---------------------------------|--| | Wrench Size | Specified
Bolt Torque* | | | In. | FtLbs | | | 11/16 | 30-45 | | | 7/8 | 30-45 | | | 11/16 | 60-90 | | | | ## Wrench Size ## In. 11/16 | | ^{*} Non-lubricated bolt torques. # Figure 7010 Reducing Coupling # 1. Check & Lubricate Gasket Check gasket to be sure it is compatible for the intended service. Apply a thin coating of Gruvlok lubricant to outside and sealing lips of the gasket. Be careful that foreign particles do not adhere to lubricated surfaces. # 2. Gasket Installation Place the smaller opening of the gasket over the smaller pipe. Angle the gasket over the pipe end and pull the gasket lip open around the circumference of the pipe. The center leg of the gasket should make flush contact with the pipe end and will prevent telescoping of the smaller pipe inside the larger. # 3. Alignment center lines, and insert the larger pipe end into the gasket. Angle the pipe end slightly to the face of the Align the adjoining pipe gasket and tilt the pipe into the gasket to ease assembly. Gruvlok Steel Flange Data Weld Fitting and Information Conversions General Welding Drop Nipple and # 4. Housings Place the coupling housing halves over the gasket making sure the housing keys engage the grooves. Insert bolts and turn nuts finger tight. # 5. Tighten Nuts Tighten the nuts alternately and equally to the specified bolt torque.* The housing bolt pads must make metal-to-metal contact. **CAUTION:** Uneven tightening may cause the gasket to pinch. # 6. Assembly Complete Visually inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves and the bolt pads are in firm even metal-tometal contact on both sides of the coupling. NOTE: Fig. A illustrates the correct position of the Fig. 7010 Reducing Coupling gasket and housing properly assembled onto adjacent pipe ends. CAUTION: In vertical installations the pipes must be supported to prevent telescoping during installation. required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. CAUTION: Proper torquing of coupling bolts is CAUTION: Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. ^{*} Refer to page 28 with bolt torque table Figure 7012 Flange (2" - 12") # Applications which require a Gruvlok Flange Adapter Insert: - When mating to a wafer valve (lug valve), if the valve is rubber faced in the area designated by the sealing surface dimensions (A Max. to B Min.), place the Gruvlok Flange Adapter Insert between the valve and the Gruvlok Flange. - When mating to a rubber-faced metal flange, the Gruvlok Flange Adapter Insert is placed between the Gruvlok Flange and the rubber-faced flange. - When mating to a serrated flange surface, a standard full-faced flange gasket is installed against the serrated flange face, and the Gruvlok Flange Adapter Insert is placed between the Gruvlok Flange and the standard flange gasket. - When mating to valves or other component equipment where the flange face has an insert, use procedure described in note 3. Check pipe end for proper grooved dimensions and to assure that the pipe end is free of indentations and projections that would prevent proper sealing of the Gruvlok flange gasket. # 1. Install Housings On the side without the hinge pin, loosen the latch bolt nut to the end of the bolt thread. (It is not necessary to remove the nut from the latch bolt.) Swing the latch bolt out of the slot. Open the Gruvlok Flange and place around the grooved pipe end with the key section fitting into the groove. The flange gasket cavity must face the pipe end. # 2. Latch Housings Place the latch bolt back into the slotted hole. Tighten the nut until there is a V_6 " gap between the flange halves at location "A". (See Figure below) # Check & Lubricate Gasket Check the gasket to assure that it is properly suited for the intended service. Lubricate the entire exterior surface of the gasket, including the sealing lips, using the proper Gruvlok lubricant. The Gruvlok Flange gasket must be inserted so that the sealing lips face toward the pipe end and the mating flange. The lip of the gasket, sealing on the pipe, should not extend beyond the pipe end. The pipe should extend out beyond the end of the sealing lip by approximately $\frac{1}{6}$ on the 2"-6" sizes and $\frac{3}{6}$ " on the 8"-12" sizes. #### 4. Install Gasket Stretch the Gruvlok gasket around the pipe end and then press the gasket into the cavity between the pipe O.D. and the flange. The gasket must be properly positioned as shown in the figure below. Gruvlok® Fig. 7012 or 7013 Flance Mating Flange Component # 7. Install Bolting Insert a flange bolt or stud with material properties of SAE 1429 Grade 5 or higher through the bolt holes and thread a nut on hand tight. Continue this procedure until all bolt holes have been fitted. Tighten the nuts alternately and evenly so the flange faces remain parallel. All the bolts or studs must be torqued to the mating flange bolts specified torque. The flange faces should have metal-to-metal contact. # 5. Lubricate Gasket Lip With the gasket in place apply lubricant to the exposed gasket tip, which will seal on the mating flange. Tighten the nuts on the latch bolts alternately to the specified latch bolt torque.* The flange housings must be in firm metal-to-metal contact. * Refer to page 28 with bolt torque table # 6. Inspect Mating Flange Verify that the mating flange face is hard, flat and smooth, free of indentations, which would prevent proper sealing of the Gruvlok Flange gasket. Assure the gasket is still in the proper position and align Gruvlok Flange bolt holes with the mating flange, pump, tank, etc., bolt holes. Rubber Surface Flange Adapter Insert FIG. C2 Gruvlok® Fig. 7012 or 7013 Flance NOTE: The Gruvlok Fig. 7012 Flange requires the use of a Flange Adapter Insert when used against rubber surfaces (Figure CI), serrated flange surfaces or mating flanges with inserts (Figure C2). The Flange Adapter Insert will be exposed to the fluids in the system. Ensure that the Insert is compatible with the fluids in the systems and with adjacent piping components. Adapter Insert in copper systems or in systems where galvanic corrosion is possible. CAUTION: Proper torquing of flange bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. CAUTION: Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. It is important to line up the bolt holes before bringing the two flanges together. Sliding the flanges into place will dislodge the gasket and cause leakage to occur. When using a flange insert, it is important that the insert is properly aligned with the gasket prior to tightening the bolts. Gruvlok Weld Fitting and Steel Flange Data Mating Flange General Welding Information Conversions Drop Nipple and Fee-Let Installation Figure 7012 Flange (14" - 24") Gruvlok® Flanges of 14" size and larger are cast in four segments to ease handling during assembly. Figure 7012 Gruvlok Flanges should not be used with tie rods nor in a configuration with a wafer valve between two 7012 flanges. Place each Gruvlok Flange segment around the grooved pipe with the key section fitting into the groove and the flange gasket cavity facing the pipe end. Loosely assemble the segments using the four segment-bolts-and nuts. Alternately and equally tighten the latch bolts and nuts to the specified latch bolt torque. Bring the four flange segments into full, firm metal-to-metal contact. NOTE: An alternative method of assembly is to loosely preassemble two segments into two equal halves of the flange leaving a small gap (approximately 1/s") between the two segments of each flange-half. Place the flange halves around the pipe and complete the assembly as described in Step 1, above. 2 Check the gasket grade to verify that it is properly suited for the intended service. Lubricate the entire surface of the gasket and the flange cavity using the appropriate Gruvlok Lubricant. Place the Gruvlok Flange Gasket around the pipe end by pressing the gasket into the cavity between the pipe O.D. and flange recess. Move around the gasket in both directions
until the gasket is fully seated in the flange gasket cavity. The correct position and relationship of the components of the Gruvlok Flange assembly is shown in the Figure above. The wide gasket lip must seal on the pipe surface diameter and the narrow gasket lip must face the mating flange. Be careful that foreign particles do not adhere to lubricated surfaces. NOTE: Design of the Gruvlok Flange provides sealing only with the special Gruvlok Flange gasket. Only Gruvlok Flange gaskets may be used with Fig. 7012 flanges. Align the Gruvlok Flange bolt holes with mating flange bolt holes. Insert a flange bolt or stud with material properties of SAE J429 Grade 5 or higher through the bolt holes and thread a nut on hand tight. Insert the next bolt or stub opposite the first and again thread the nut on hand tight. Continue this procedure until all bolt holes have been fitted. Insertion of the flange bolts prior to contact of the flanges will help in the alignment of the flanges. Pull the two flanges into contact using care to assure that the gasket remains fully seated within the gasket cavity during assembly. **NOTE:** Take care to assure that the gasket lip is not bent backwards and pinched between the two flanges. **5** Tighten the nuts evenly to the specified mating face bolt torque so that the flange faces remain parallel and make firm even contact around the entire flange. CAUTION: Proper torquing of flange bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. CAUTION: Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. # Figures 7045 & 7046 Clamp-T® Branch Outlets ALWAYS USE A GRUVLOK LUBRICANT FOR PROPER COUPLING ASSEMBLY. Thorough lubrication of the gasket is essential to assist the gasket into the proper sealing position. #### 1. Pipe Preparation Cut the appropriate size hole in the pipe and remove any burrs. Be sure to remove any debris from inside the pipe. Clean the gasket sealing surface within 5/8" of the hole and visually inspect the sealing surface for defects that may prevent proper sealing of the gasket. | HOLE SAW
SIZE | |---------------------| | (Inches) (+1/8, -0) | | 11/2 | | 2 | | 21/2 | | 23/4 | | 31/2 | | 41/2 | | | # 2. Check & Lubricate Gasket Check the gasket to be sure it is compatible for the intended service. Apply a thin layer of Gruvlok lubricant to the back surface of the gasket. Be careful that foreign particles do not adhere to the lubricated surfaces. Insert the gasket back into the outlet housing making sure the tabs in the gasket line up with the tab recesses in the housing. # 3. Gasket Installation Lubricate the exposed surface of the gasket. Align the outlet housing over the pipe hole making sure that the locating collar is in the pipe hole. Weld Fitting and Table of Contents Gruvlok Pipe and General Welding Conversions Drop Nipple and # 4. Alignment Align the strap around the pipe, insert the bolts and tighten the nuts finger tight. Some sizes use a U-bolt design. # 5. Tighten Nuts Alternately and evenly tighten the nuts to the specified bolt torque. 6. Assembly is Complete # FIGS. 7045 & 7046—SPECIFIED BOLT TORQUE Specified bolt torque is for the oval neck track bolts and U-bolts used on the Gruvlok® Clamp-T's. The nuts must be tightened alternately and evenly until fully tightened. CAUTION: Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure, battery strength and operational variations. CAUTION: Proper torquing of the bolts or U-bolts is required to obtain the specified performance. Over torquing the bolts or U-bolts may result in damage to the bolt, U-bolt and/or casting which could result in lower pressure retention capabilities, lower bend load capabilities, pipe joint leakage and pipe joint separation. | BOLT TORQUE | | | |--------------|----------------|--------------------------| | Bolt
Size | Wrench
Size | Specified
Bolt Torque | | In. | In. | FtLbs. | | U-Bolt | 7/8 | 30-40 | | 1/2 | 7/8 | 60-80 | | 5/8 | 11/16 | 100-130 | | 3/4 | 11/4 | 130-180 | ^{*} Non-lubricated bolt torques # Figure 7305 HDPE Coupling 1. Pipe Preparation Make certain the pipe ends are free of indentations, projections or other imperfections, which could prevent proper sealing of the gasket. Mark each pipe at a distance from the end of the pipe according | F-F | | | |---------|---------------------|--| | Size | Distance
to Mark | | | In./mm | In./mm | | | 2-4 | 1 | | | 51-102 | 25.4 | | | 5-8 | 11/4 | | | 127-203 | 31.8 | | | 10-12 | 13/4 | | | 254-305 | 44.5 | | to the nine size. **NOTE:** Make certain the HDPE pipe end is square cut to 1/8" maximum for the 2" to 4" and 5/32" maximum for the 6" and larger sizes. 2. Check and Lubricate Gasket Check to assure the gasket material is acceptable for the intended service. The Gasket color code is green for EPDM and orange for Nitrile (Buna-N). CAUTION: Use only Gruvlok Xtreme™ Lubricant. Gruvlok Xtreme Lubricant Contains silicone. If silicone is unacceptable for the application contact Gruvlok for the lubrication recommendation. Apply a thin coating of Gruvlok Xtreme Lubricant to the gasket lip and outside surface of the gasket. Installation Slip the gasket over one of the pipe ends. Make sure the gasket does not overhang the pipe end. Align the second pipe and while keeping the pipes in the butted position slide the gasket back over the second pipe end. The gasket must be positioned centrally between the lines on the pipe ends. **4. Housings**Place the Figure 7305 housing over the gasket, making sure the tongue on one half is aligned with the recess of the other half # SPECIFIED BOLT TOROUE Specified bolt torque is for the oval neck track bolts used on Gruvlok® couplings. The nuts must be tightened alternately and evenly until fully tightened. **CAUTION:** Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. CAUTION: Proper torquing of coupling bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. # 5. Tighten Nuts Insert the bolts and secure the nuts alternately and uniformly until the bolt pads are in contact. Torque all bolts to the required bolt torque levels. Refer to the Specified Bolt Torque Table. There is no gap between the bolt pads and the bolt torque should be within the range given when the coupling is properly assembled. Alternate and even tightening of the bolts will significantly reduce the torque needed to close the gap at the pipe joint. | FIG. 7305 SPECIFIED BOLT TORQUE | | | |--|------------------|-------------------| | Coupling Bolts | Minimum | Maximum | | In. | FtLbs./N-m | FtLbs./N-m | | ½ x 2 % | 80
110 | 100
<i>150</i> | | ½ x 3 | 80
110 | 100
150 | | 5% x 3½ | 100
135 | 130
175 | | ³ / ₄ x 4 ³ / ₄ | 130
175 | 180
245 | # Figure 7307 HDPE Transition Coupling # 1. Pipe Preparation Make certain the HDPE pipe end is square cut to 1/8" maximum for the 2" to 4" and 5/32" maximum for the 6" and larger sizes. The steel pipe must be grooved in accordance with Gruvlok® Grooving Specifications for Steel Pipe. The pipe ends must be free of scratches, indentations, projections or other imperfections, which could prevent proper sealing of the gasket. # 2. Check and Lubricate Gasket Check to assure the gasket material is acceptable for the intended service. The Gasket color code is green for EPDM and orange for Nitrile (Buna-N). **CAUTION:** Use only Gruylok Xtreme[™] Lubricant. Gruvlok Xtreme Lubricant contains silicone. If silicone is unacceptable for the application contact Gruvlok for the lubrication recommendation. Apply a thin coating of Gruvlok Xtreme Lubricant to the gasket lips and outside surface of the gasket. # 3. Gasket Installation Slip the gasket over one of the pipe ends. Make sure the gasket does not overhang the pipe end. Align the second pipe and while holding it in the butted position, slide the gasket back over the second pipe end. The gasket must be positioned on the gasket seat surface of the grooved steel pipe. Make sure the gasket does not overhang into the pipe groove. # 4. Housings Place each half of the coupling housing over the gasket, making sure the housing grooved end is directed into the pipe groove. # Weld Fitting and # Information Conversions General Welding # Drop Nipple and #### SPECIFIED BOLT TORQUE Specified bolt torque is for the oval neck track bolts used on Gruvlok® couplings. The nuts must be tightened alternately and evenly until fully tightened. **CAUTION:** Use of an impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. CAUTION: Proper torquing of coupling bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower
bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. | FIG. 7307 SPECIFIED BOLT TORQUE | | | |---------------------------------|------------|-------------------| | Coupling Bolts | Minimum | Maximum | | In. | FtLbs./N-m | FtLbs./N-m | | ½ x 2 3/8 | 80
110 | 100
<i>150</i> | | ½ x 3 | 80
110 | 100
150 | | 5% x 3½ | 100
135 | 130
175 | | 7⁄8 x 51∕2 | 180
245 | 220
300 | # 5. Tighten Nuts Insert the bolts and secure the nuts alternately and uniformly until the bolt pads are in contact. Torque all bolts to the required bolt torque levels. Refer to the Specified Bolt Torque Table. There is no gap between the bolt pads and the bolt torque should be within the range given when the coupling is properly assembled. Alternate and even tightening of the bolts will significantly reduce the torque needed to close the gap at the bolt pads. # Figure 7004 High Pressure Coupling # 1. Check & Lubricate Gasket Check gasket to be sure it is compatible for the intended service. Apply a thin coat of Gruvlok Lubricant to outside and sealing lips of the gasket. Be careful that foreign particles do not adhere to lubricated surfaces. 2. Gasket Installation Slip the gasket over the pipe end, making sure the gasket lip does not overhang the pipe end. 3. Alignment After aligning the two pipe ends together, pull the gasket into position, centering it between the grooves on each pipe. Gasket should not extend into the groove on either pipe. 4. Housings Place each housing halves on the pipe making sure the housing key fits into the groove. Be sure that the tongue and recess portions of the housing mate properly. Insert the bolts and run up the nuts finger tight. # 5. Tighten Nuts Securely tighten nuts alternately and equally to the required indicator. For 2" - 4" 7004 couplings, please use the table below for required torque values. For 7004 5" and larger, tighten nuts till housings are in metal-tometal contact. # 6. Assembly is Complete Visually inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves. For 2" - 4" ensure the gaps on each side are evenly space, and for 5" and larger couplings ensure the housings are in firm even metal-to-metal contact on both sides CAUTION: When using an impact wrench, verify that the output of the torque wrench is within the required torque range. It is recommended that a torque wrench be used for accurate assembly in order to obtain specified performance. | SP | SPECIFIED BOLT TORQUE | | | | |------|-----------------------|-----------|--|--| | Size | Bolt Size | Torque | | | | In. | In. | FtLbs | | | | 2 | 5/8 | 100 - 130 | | | | 21/2 | 5/8 | 100 - 130 | | | | 3 | 5/8 | 100 - 130 | | | | 4 | 3/4 | 130 - 180 | | | | 5 | 7/8 | * | | | | 6 | 7/8 | * | | | | 8 | 1 | * | | | | 10 | 1 | * | | | | 12 | 1 | * | | | * Torque required to bring housing metal-to-metal contact. # Figure 7004 with EG® Gasket High Pressure Coupling with End Guard® Gasket For 7004 with EG® gasket required specified pipe end groove dimensions and fittings, see pages 36-37 for groove dimensions. CAUTION: Not using the correct groove dimensions will result in pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. Table of Contents Gruvlok Gruvlok Weld Fitting and General Welding Conversions Drop Nipple and 1. Check & Lubricate Gasket Check gasket to be sure it is compatible for the intended service. Apply a thin coat of Gruvlok Lubricant to outside and sealing lips of the gasket. Be careful that foreign particles do not adhere to lubricated surfaces. 2. Gasket Installation Slip the gasket half way on to the pipe end, stop when the center gasket leg comes in contact with the pipe end. Slide the second pipe end half way into the gasket, stopping then the pipe end comes in contact with the center gasket leg. Ensure pipes are aligned properly. # 3. Housings Place each housing halves on the pipe making sure the housing key fits into the groove. Be sure that the tongue and recess portions of the housing mate properly. Insert the bolts and run up the nuts, finger tight. # 4. Tighten Nuts Securely tighten nuts alternately and equally to the required indicator. For 2" - 4" couplings, please use the table on this page for required torque values. For 5" and larger, tighten nuts till housings are in firm metal-tometal contact. # 5. Assembly is Complete Visually inspect the pipe joint to assure the coupling keys are fully engaged in the pipe grooves. For 2" - 4" ensure the gaps on each side are evenly space, and for 5" and larger couplings ensure the housings are in firm even metal-to-metal contact on both sides. | SPECIFIED | | |--------------|--| | BOLT TOROLLE | | | Size | Bolt Size | Torque | |------|-----------|-----------| | In. | In. | FtLbs | | 2 | 5/8 | 100 - 130 | | 21/2 | 5/8 | 100 - 130 | | 3 | 5/8 | 100 - 130 | | 4 | 3/4 | 130 - 180 | | 5 | 7/8 | * | | 6 | 7/8 | * | | 8 | 1 | * | | 10 | 1 | * | | 12 | 1 | * | * Torque required to bring housing metal-to-metal contact. CAUTION: When using an impact wrench, verify that the output of the torque wrench is within the required torque range. It is recommended that a torque wrench be used for accurate assembly in order to obtain specified performance. # Sock-It® Fittings # 1. Pipe Preparation Pipe surface shall be cleaned at least 1" from the end of the pipe to remove any coating, indentations, projections, and sharp edges which could affect proper gasket sealing. As a guide for installation, mark the pipe at a distance of $1^{1}/2^{"}$ from the end for $1^{"}$, $1^{1}/4^{"}$. and $1^{1}/2^{1}$ size fittings and $1^{3}/4^{1}$ for the 2" & $2^1/2$ " size fittings. NOTE: When Allied XL pipe is used it is necessary only to remove sharp edges and burrs at the end of the pipe. No additional cleaning is required. # 2. Check Bolts Check all lock bolts to be sure they do not extend into the I.D. of the Sock-It Fittings as this would prevent proper insertion of the pipe. # 3. Lubricate Gaskets Apply a light coating of GRUVLOK Lubricant to the gaskets located in each end of the Sock-It Fitting. Also apply a light coating of lubricant to the pipe ends to further ease insertion of the pipe into the Sock-It Fitting. NOTE: Use only Gruvlok Lubricants. Other lubricants may affect gasket performance. #### 4. Insert Pipe & Tighten Bolts Insert the prepped and lubricated pipe end into the Sock-It Fitting until the pipe end makes contact with the internal pipe stop. A slight twist while pushing fitting and pipe together will ease the required insertion force. The end of the Sock-It Fitting should be within $\frac{1}{16}$ " from the edge of the marking on the pipe. (See Step 1). Rotate the fitting until the desired position is obtained. Tighten the lock bolt until the bolt head bottoms against the threaded boss. (NOTE: The 21/2" Sock-It fitting has 2 locking bolts for each pipe end.) Install the other prepped and lubricated pipe end into the Sock-It fitting in the same manner. CAUTION: Do NOT hammer fitting on. #### 5. Assembly is Complete Sock-It Fittings may be removed by loosening the lock bolts. Reinstallation may be accomplished as described in Steps 1-4. Install the other prepped and lubricated pipe end into the Sock-It fitting in the same manner. System pressure must be relieved vented, and the system drained of fluid prior to loosening the lock bolts to remove or reposition the Sock-It Fitting. Bolt end must be inspected to assure bolts ability to cut into pipe. Replace bolts in cases where bolt end sharpness has been comprised. # Gruvlok Gasket Grade Index The lists are provided as an aid in selecting the optimum gasket grade for a specific application to assure the maximum service life. The recommendations have been developed from current information supplied by manufacturers of the elastomers, technical publications, and industry applications. The information supplied should be considered as a basis for evaluation but not as a guarantee. Selection of the optimum gasket grade for a specific service requires the consideration of many factors; primarily temperature, fluid concentration, and continuity of service. Unless otherwise noted, all gasket recommendations are based on 100°F (38°C) maximum temperature service condition. Where more than one gasket grade is shown, the preferred grade is listed first. Combinations of fluids should be referred to an Anvil Rep. for an engineering evaluation and recommendation. In unusual or severe services, gasket materials should be subjected to simulated service conditions to determine the most suitable gasket grade. GRUVLOK Gasket recommendations apply only to Gruvlok gaskets. Contact an Anvil Representative for recommendations for services not listed. These listings do not apply to Gruvlok Butterfly Valves. All Gruvlok products marked with UL/ULC Listed, FM approved VdS and/or LPC symbols are Listed/Approved with EPDM material. For other Listed/Approved materials, please contact an Anvil Representative for more information. # **GASKET GRADE INDEX:** | | | STAI | NDARI | O GASKETS | |-------|-------------------------------------|---------------------|---------------------|---| | Grade | Temperature
Range | Compound | Color
Code | General Service Applications | | E | -40°F to +230°F
(-40°C to 110°C) | EPDM | Green | Water, dilute acids, alkalies, salts, and many chemical services not involving hydrocarbons, oils, or gases. Excellent oxidation resistance. NOT FOR USE WITH HYDROCARBONS | | EP | -40°F to +250°F
(-40°C to 121°C) | EPDM | Green
and
Red | Water, dilute acids, alkalies, salts, and many chemical services not involving hydrocarbons, oils, or gases. Excellent oxidation
resistance. NOT FOR USE WITH HYDROCARBONS | | T | -20°F to +180°F
(-29°C to 82°C) | Nitrile
(Buna-N) | Orange | Petroleum products, vegetable oils, mineral oils, and air contaminated with petroleum oils. NOT FOR USE IN HOT WATER SERVICES | | | SPECIAL GASKETS | | | | | | | | | | |--------|-------------------------------------|---------------------|---------------|--|--|--|--|--|--|--| | Grade | Temperature
Range | Compound | Color
Code | General Service Applications | | | | | | | | 0 | +20°F to +300°F
(-20°C to 149°C) | Fluoro
Elastomer | Blue | High temperature resistance to oxidizing acids, petroleum oils, hydraulic fluids, halogenated, hydrocarbons and lubricants | | | | | | | | L | -40°F to +350°F
(-40°C to 177°C) | Silicone | Red
Gasket | Dry, hot air and some high temperature chemical services. | | | | | | | | Type A | -40°F to +150°F
(-40°C to 66°C) | Pre-
Lubricated | Violet | Wet & Dry (oil free air) Pipe in Fire Protection
Systems. For dry pipe systems, Gruvlok
Xtreme™ Temperature Lubricant is required. | | | | | | | # Gruvlok Gasket Recommendation List & Vacuum Service # **GASKET RECOMMENDATION LISTING:** | WATER & AIR | | |---|--------------| | Service | Gasket Grade | | Air, (no oil vapors) Temp40°F to 230°F (-40°C to 110°C) | E/EP | | Air, (no oil vapors) Temp40°F to 350°F (-40°C to 177°C) | L | | Air, Oil vapor Temp20°F to 150°F (-29°C to 66°C) | T | | Air, Oil vapor Temp. 20°F to 300°F (-7°C to 149°C) | 0 | | Water, Temp to 150°F (66°C) | E/EP/T | | Water, Temp to 230°F (110°C) | E | | Water, Acid Mine | E/T | | Water, Chlorine | (E/EP/0) | | Water, Deionized | E/EP/T | | Water, Seawater | E/EP/T | | Water, Waste | E/EP/T | | Water, Lime | E/EP/T | Where more than one gasket grade is shown the preferred gasket grade is listed first. Where the gasket grade is shown in parentheses, Contact an Anvil Representative for an engineering evaluation and recommendation. Specify gasket grade when ordering. Use Gruvlok lubricant on gasket. Check gasket color code to be certain it is recommended for the service intended. | PETROLEUM PRODUCTS | | |----------------------------------|--------------| | Service | Gasket Grade | | Crude Oil - Sour | T | | Diesel Oil | T | | Fuel Oil | T | | Gasoline, Leaded | T | | Gasoline, Unleaded* | (0) | | Hydraulic Oil | T | | JP-3, JP-4 and JP-5 | T/0 | | JP-6, 100°F (38°C) Maximum Temp. | 0 | | Kerosene | T | | Lube Oil, to 150°F (66°C) | T | | Motor Oil | T | | Natural Gas | T | | Tar and Tar Oil | T | | Transmission Fluid —Type A | 0 | | Turbo Oil #15 Diester Lubricant | 0 | Unless otherwise noted, all gasket listings are based upon 100°F (38°C) maximum temperature service conditions. For services not listed, contact an Anvil Representative for recommendation. # VACUUM SERVICE: | VACUUM SERVICE | | | | | | |--|----------------|-----------------------|--|--|--| | Size Vacuum Level Gasket Recommendatio | | | | | | | 1" - 12" (25 - 300mm) | 0" - 10" Hg | Standard or Flush Gap | | | | | 1½" - 12" (40 - 200mm) | 10" - 29.9" Hg | Flush Gap | | | | LARGER SIZES: Contact an Anvil Representative for more information. ^{*}Contact an Anvil Representative for service evaluation. # Gruvlok Lubricants #### GRUVLOK® XTREME™ LUBRICANT Gruvlok® Xtreme" Lubricant has been developed for use with Gruvlok couplings in services where improved lubrication is beneficial. This lubricant has an operating temperature range from -65°F to 400°F (-53.8°C to 204°C), well exceeding the temperature range of Gruvlok gaskets. This lubricant is waterproof, thereby eliminating water wash-out and it will not dry out in the absence of water. There are five primary applications where the Xtreme Lubricant will provide increased benefits: low temperature applications below -20°F(-28.0°C), high temperature applications above 150°F (65.6°C), applications where increased pipe joint flexibility is needed, lubrication of gaskets in copper systems, and for the lubrication of gaskets on HDPE couplings. Since it is formulated from a non-hydro carbon base, it can be used with EPDM, Nitrile and Fluoroelastomer gasket materials. It is not to be used with Silicone gaskets. - In low temperature applications the gasket will shrink, thereby lowering the sealing force on the gasket sealing lips. The temperature change will also force the gasket to slightly re-position itself. This will cause pipe end sealing surfaces, with small cuts or damage, to become more susceptible to leakage. Gruvlok Xtreme Lubricant will maintain its lubricating properties at lower temperatures allowing a properly lubricated pipe end and gasket (assembly) to reposition itself during temperature cycles. - For high temperature service and copper systems, it is required that the gasket be lubricated not only on the outside, as with the normal installation of a Gruvlok gasket, but also on the inside. Lubrication on the inside of the gasket is easily accomplished by turning the gasket inside out and applying the lubricant. Gruvlok Xtreme Lubricant will maintain its lubricating properties at higher temperatures, allowing a properly lubricated pipe end and gasket assembly to re-position itself during temperature cycles. Lubrication of the pipe end and gasket will help the gasket to adjust into the proper sealing position during temperature cycles. The lubricant on the interior of the gasket will act to improve the chemical resistance of the gasket material by providing a thin lubricant barrier between the piping system fluid and the gasket surface. This is particularly important at higher temperatures where oxidizing agents in the piping system become more aggressive. However, gasket chemical compatibility must still be considered. - The Gruvlok Xtreme Lubricant has been formulated from low viscosity, non-petroleum based oils to ease spreading of the lubricant. In applications where pipe movement is expected, proper lubrication of the gasket's exterior assists the gasket into the proper sealing position as pipe system movement occurs. This lubricating film enhances our flexible coupling gasket's ability to compensate for axial, transverse and rotational pipe movements. - Gruvlok Xtreme Lubricant is the only Gruvlok lubricant that is to be used with Gruvlok couplings and gaskets in HDPE and copper piping systems. It's low temperature capability and lubricity ensure a highly reliable connection. Gruvlok® Xtreme™ Lubricant is a Teflon® fortified white, tasteless and odorless grease made from Silicone Oil and other ingredients that are safe to ingest. It is sanctioned by the FDA under C.F.R. 21.172.878 & 21.177.1550 (Incidental Food Contact). It is NSF approved for use with potable water. CAUTION: Silicone based lubricants are not allowed in some facilities. Do not use with CPVC Products. Table of ^{*}Teflon is a registered trademark of Dupont. # Gruvlok Lubricants Continued #### GRUVLOK® OUICK DRY LUBRICANT Gruvlok® Quick Dry Lubricant is a fast drying lubricant that has been developed for applications where the piping system is exposed. The service temperature range for this lubricant is from 0° F to 150° F (-17.8°C to 65.6°C) and may be used with all Gruvlok gasket material grades. The lubricant is made from a water emulsion that is non-toxic, it will not impart taste or odor, and does not support bacterial growth. Gruvlok Quick Dry Lubricant is non-corrosive, non-flammable, and is NSF approved for use with potable water. This lubricant is easy to apply by brush or hand, and it quickly dries to a thin film when in contact with air. It is water-soluble. The quick drying quality of the lubricant eliminates lubricant drips caused by over lubrication. If necessary, reapply lubricant prior to assembly. Do not thin or mix with solvents. #### GRUVLOK® LUBRICANT Gruvlok® Lubricant is the standard lubricant that has been provided for use with Gruvlok products for years. Gruvlok Lubricant is water soluble, non-toxic, non-corrosive, non-flammable, and will not impart taste or odor. It is NSF approved for use with potable water. This lubricant is acceptable for most applications, however, the Gruvlok Xtreme Lubricant and Gruvlok Quick Dry Lubricant are now available to improve the performance of the couplings and flanges in certain applications. CAUTION: HDPE pipe requires the use of Gruvlok Xtreme Lubricant and should not be used with Gruvlok Lubricant. # Specified Bolt Torque Specified bolt torque is for the oval neck track bolts used on Gruvlok couplings and flanges. The nuts must be tightened alternately and evenly until fully tightened. **CAUTION:** Use of an Impact wrench is not recommended because the torque output can vary significantly due to many variables including air pressure supply, battery strength and operational variations. CAUTION: Proper torquing of coupling bolts is required to obtain specified performance. Over torquing the bolts may result in damage to the bolt and/or casting which could result in pipe joint separation. Under torquing the bolts may result in lower pressure retention capabilities, lower bend load capabilities, joint leakage and pipe joint separation. Pipe joint separation may result in significant property damage and serious injury. NOTE: Use specified bolt torque unless otherwise indicated on product installation pages. | ANSI
SPECIFIED BOLT TORQUE | | | | | | | | |-------------------------------|--|----------------------------|--|--|--|--|--| | Bolt
Size | Wrench
Size | Specified
Bolt Torque * | | | | | | | In. | In. | FtLbs. | | | | | | | 3/8 | 11/16 | 30-45 | | | | | | | 1/2 | 7/8 | 80-100 | | | | | | | 5/8 | 11/16 | 100-130 | | | | | | | 3/4 | 11/4 | 130-180 | | | | | | | 7/8 | 1 7/ ₁₆ | 180-220 | | | | | | | 1 |
1% | 200-250 | | | | | | | 11//8 | 1 ¹³ ⁄ ₁₆ | 225-275 | | | | | | | 11/4 | 2 | 250-300 | | | | | | | METRIC
SPECIFIED BOLT TORQUE | | | | | | | |---------------------------------|-----------------------|---------|--|--|--|--| | Bolt
Size | Bolt Wrench Specified | | | | | | | mm | mm | N-m | | | | | | M10 | 16 | 40-60 | | | | | | M12 | 22 | 110-150 | | | | | | M16 | 24 | 135-175 | | | | | | M20 | 30 | 175-245 | | | | | | M22 | 34 | 245-300 | | | | | | M24 | 36 | 270-340 | | | | | ^{*} Non-lubricated bolt torques ^{*} Non-lubricated bolt torques # Pipe Preparation To create a Gruvlok pipe joint, all pipe must be prepared to receive Gruvlok coupling or other Gruvlok pipe system components. The required pipe preparation may be grooving or cleaning the pipe ends, or cutting a hole in the pipe wall. For grooved-end joints, pipe may be grooved by either of two methods; cut or roll grooving. Branch outlet connections require a properly sized and correctly located hole to be cut into the pipe. Sock-it connections require cleaning of the pipe end. Gruvlok plain-end pipe couplings require that the pipe be free of burrs and other sharp projections which could damage the gasket; grooving is not required. Gruvlok pipe grooving and hole cutting machines are available in a wide variety of designs to meet specific or general requirements. Gruvlok roll grooving machines produce a groove to proper dimensional tolerances, concentric with the pipe O.D., even on out-of-round pipe. Gruvlok hole cutting tools properly center holes for correct assembly of Gruvlok branch outlet components. # **Cut-Grooving:** Cut grooving is intended for use with standard and heavier wall pipe. Cut grooving produces a groove in the pipe wall by removing metal from the pipe O.D. The groove removes less than one half of the pipe wall and does not cut as deeply into the pipe wall as do standard pipe threads. The square cut edge of the groove allows for the full expansion, contraction, and deflection capabilities of the Gruvlok coupling. # Roll-Grooving: Roll grooving does not remove metal. Instead, metal is displaced while a groove is formed into the outer surface of the pipe wall. The groove configuration has slightly rounded edges resulting in a less flexible joint than a cut groove joint. This reduces available pipe joint movement by 50% over cut grooved coupling joints. Roll grooving is commonly used on a wide range of pipe thicknesses up to 0.375" wall steel pipe and sizes to 24" O.D. The I.D. "dimple" formed from roll grooving reduces the I.D. (on an average) less than 2%. Available Movement Roll Groove vs. Cut Groove # Pipe Preparation Continued # Branch Outlet Pipe: Clamp-T® Clamp-T installations require the cutting of a hole through the pipe wall. The hole must be properly sized and located on the centerline of the pipe to assure reliable performance of the Clamp-T gaskets. After the hole has been cut into the pipe wall, any burrs and sharp or rough edges must be removed from the hole. The outside pipe surfaces within 5/8" of the hole must be clean and smooth. Any scale, projections or indentation which might effect the gasket sealing on the pipe must be removed. The surface around the entire circumference of the pipe within the "A" dimension in the charts must be free from dirt, scale, or projections which might effect the proper assembly of the Clamp-T. | CLAMP-T INSTALLATION | | | | | | | |----------------------|----------|------------|---------|--|--|--| | Branch | Hole Di | mensions | Surface | | | | | Size | Hole | Max. Perm. | Prep. | | | | | Size | Saw Size | Diameter | "A" | | | | | DN/mm | In./mm | In./mm | In./mm | | | | | 1/2, 3/4, 1 | 11/2 | 1% | 31/2 | | | | | 15, 20, 25 | 38.1 | 41.3 | 88.9 | | | | | 11/4, 11/2 | 2 | 21/8 | 4 | | | | | 32, 40 | 50.8 | 54.0 | 101.6 | | | | | 2 | 21/2 | 25/8 | 41/2 | | | | | 50 | 63.5 | 66.7 | 114.3 | | | | | 21/2 | 23/4 | 27/8 | 43/4 | | | | | 65 | 69.9 | 73.0 | 120.7 | | | | | 3 | 31/2 | 35/8 | 51/2 | | | | | 80 | 88.9 | 92.1 | 139.7 | | | | | 4 | 41/2 | 45/8 | 61/2 | | | | | 100 | 114.3 | 117.5 | 165.1 | | | | # Roughneck®: Plain-End pipe for use with Fig. 7005 Roughneck Couplings must be free of any notches, bumps, weld bead, score marks, etc. for at least 1½" (38 mm) back from the pipe end to provide a smooth sealing surface for the gasket. Pipe ends (plain or beveled end) must be square cut as measured from a true square line with the maximum allowable tolerance as follows: 0.030" (0.7 mm) for 2" through 3"; 0.045 (1.1 mm) for 4" through 6"; and 0.060" (1.5 mm) for 8" sizes. The nominal outside diameter of pipe should not vary more than 1% for sizes up to $2^1/2^1$, $+1\%^2$ "for sizes 3"-5", +1/6" -1/2 " for sizes 6" and larger. Pipe ends must be marked a distance of 1" from the pipe end for Sizes 2"-4" and $1^1/4$ " from the pipe end for Sizes 5"-8" as a guide for centering of the gasket on the pipe ends. # Pipe Preparation Continued # Sock-It®: For Sock-It Fittings, the pipe ends must be square cut as measured from a true square line. The maximum allowable tolerance is 0.030" (0.76mm) for all sizes. Any sharp edges, burrs. etc. left on the pipe from cutting must be removed. If these are not removed, they may damage the gasket as the pipe is inserted into the Sock-It Fitting. After cutting, pipe ends must be completely cleaned a minimum of 1" (25.4mm) back from the pipe end to remove all pipe coating, weld beads, rust, sharp projections, etc., which might effect gasket sealing integrity. NOTE: When Allied XL pipe is used it is necessary only to remove sharp edges and burrs at the end of the pipe. No additional cleaning is required. | | PIPE TOLERANCES | | | | | | | | | |-------|-----------------|-----------|--------|-----------------|--|--|--|--|--| | Size | Schedule | 10 & 40 | Min. | XL Min.
O.D. | | | | | | | Size | Nom O.D. | Max. 0.D. | 0.D. | | | | | | | | DN/mm | In./mm | In./mm | In./mm | In./mm | | | | | | | 1 | 1.315 | 1.325 | 1.295 | 1.285 | | | | | | | 25 | 33.4 | 33.6 | 32.9 | 32.6 | | | | | | | 11/4 | 1.660 | 1.670 | 1.642 | 1.630 | | | | | | | 32 | 42.2 | 42.4 | 41.7 | 41.4 | | | | | | | 11/2 | 1.900 | 1.910 | 1.882 | 1.875 | | | | | | | 40 | 48.3 | 48.5 | 47.8 | 47.6 | | | | | | | 2 | 2.375 | 2.385 | 2.357 | 2.352 | | | | | | | 50 | 60.3 | 60.6 | 59.9 | 59.7 | | | | | | | 21/2 | 2.875 | 2.904 | 2.846 | 2.837 | | | | | | | 65 | 73.0 | 73.8 | 72.3 | 72.1 | | | | | | # ACCEPTABLE PIPE END CONFIGURATION Square cut pipe with O.D. burr & sharp edge removed is preferred configuration. Beveled pipe. Bevel not to exceed 1/16". Soft pipe when roll cut may be swaged inward. Swaged portion not to exceed 3/16" # UNACCEPTABLE Excessive chamfer on I.D. will tend to cut gasket during assembly. Abrasive wheels & saws leave edge burrs especially pronounced on one side. Dull wheel cutter produces a raised ridge at the pipe O.D. giving an oversize diameter. The sharp O.D. edge left by different methods of cutting pipe must be removed. If this sharp edge is not removed, it may damage the gasket as the pipe is inserted into the Sock-It Fitting. # ROLL GROOVE SPECIFICATIONS COLUMN 1 - Nominal IPS Pipe size. Nominal ISO Pipe size. COLUMN 2 - IPS outside diameter. ISO outside diameter. COLUMN 3 - Gasket seat must be free from scores, seams, chips, rust or scale which may interfere with proper sealing of the gasket. Gasket seat width (Dimension A) is to be measured from the pipe end to the vertical flank in the groove wall. COLUMN 4 - Groove width (Dimension B) is to be measured between vertical flank of the groove size walls. COLUMN 5 - The groove must be of uniform depth around the entire pipe circumference. (See column 6). COLUMN 6 - Groove depth: for reference only. Groove must conform to the groove diameter "C" listed in column 5. COLUMN 7 - Minimum allowable wall thickness which may be roll grooved. **COLUMN 8 -** Maximum allowable pipe end flare diameter. Measured at the most extreme pipe end diameter of the gasket seat area. Out of roundness: Difference between maximum O.D. and minimum O.D. measured at 90° must not exceed total O.D. tolerance listed (reference column 2). For IPS pipe, the maximum allowable tolerance from square cut ends is 0.03" for 1'' thru $3^{1}/2''$; 0.045" for 4" thru 6"; and 0.060" for sizes 8" and above measured from a true square line. For ISO size pipe, the maximum allowable tolerance from square cut ends is 0.75mm for sizes 25mm-80mm: 1.15mm for sizes 100mm-150mm; and 1.50mm for sizes 200mm and above, measured from a true square line. Beveled-End Pipe in conformance with ANSI B16.25 (371/2°) is acceptable, however square cut is preferred. Seams must be ground flush with the pipe O.D. and ID prior to roll grooving. Failure to do so may result in damage to the roll grooving machine and unacceptable roll grooves may be produced. Weld Seams must be ground flush with the pipe O.D. and ID prior to roll grooving. Failure to do so may result in damage to the roll grooving machine and unacceptable roll grooves may be produced. ▼ "A" tolerance +0.030" / -0.060" (+0.77 / -1.54 mm) NOTE: VdS - Roll Grooving Approval Specifications, see the Technical Data/Install Instructions section on Anvil's web site - www anvilintl com | GRUVLOK STANDARD ROLL GROOVE SPECIFICATION FOR STEEL & OTHER IPS OR ISO SIZE PIPE | | | | | | | | | | | |---|-----------------|-----------------|-----------------|----------------|----------------|-------------------------|-----------------|---------------|--------------|------------------------| | -1- | | -2- | | -3- | -4- | -{ | | -6- | -7- | -8- | | Nom. | | 0.D. | | "A" | "B" | "C" | "C" Tol. | | "T" Min. | Max. | | Pipe | | 0.0. | | ±0.030/ | ±0.030/ | Actual | +0.000 | "D" | Allow. | Flare | | Size | Actual | Toler | ance | ±0.76 | ±0.76 | riotaai | 10.000 | (Ref. Only) | Wall Thick | Dia. | | In./DN(mm) | In./mm | +In./mm | -In./mm | In./mm | In./mm |
In./mm | -In./mm | In./mm | In./mm | In./mm | | 1 | 1.315 | +0.028 | -0.015 | 0.625 | 0.281 | 1.190 | -0.015 | 0.063 | 0.065 | 1.430 | | 25 | 33.4 | +0.026 | -0.015 | 15.88 | 7.14 | 30.23 | -0.015 | 1.60 | 1.7 | 36.3 | | 11/4 | 1.660 | +0.029 | -0.016 | 0.625 | 0.281 | 1.535 | -0.015 | 0.063 | 0.065 | 1.770 | | 32 | 42.2 | +0.74 | -0.41 | 15.88 | 7.14 | 38.99 | -0.38 | 1.60 | 1.7 | 45.0 | | 11/2 | 1.900 | +0.019 | -0.019 | 0.625 | 0.281 | 1.775 | -0.015 | 0.063 | 0.065 | 2.010 | | 40 | 48.3 | +0.48 | -0.48 | 15.88 | 7.14 | 45.09 | -0.38 | 1.60 | 1.7 | 51.1 | | 2 | 2.375 | +0.024 | -0.024 | 0.625 | 0.344 | 2.250 | -0.015 | 0.063 | 0.065 | 2.480 | | 50 | 60.3 | +0.61 | -0.61 | 15.88 | 8.74 | 57.15 | -0.38 | 1.60 | 1.7 | 63.0 | | 21/2 | 2.875 | +0.029 | -0.029 | 0.625 | 0.344 | 2.720 | -0.018 | 0.078 | 0.083 | 2.980 | | 65 | 73.0 | +0.74 | -0.74 | 15.88 | 8.74 | 69.09 | -0.46 | 1.98 | 2.1 | 75.7 | | 3 O.D.
76.1 | 2.996 | +0.030 | -0.030 | 0.625 | 0.344 | 2.845
72.26 | -0.018 | 0.076 | 0.083 | 3.100
78.7 | | 3 | 76.1
3.500 | +0.76 | -0.76
-0.031 | 15.88
0.625 | 8.74
0.344 | 3.344 | -0.46
-0.018 | 1.93
0.078 | 2.1
0.083 | 3.600 | | 80 | 88.9 | +0.033 | -0.79 | 15.88 | 8.74 | 84.94 | -0.46 | 1.98 | 2.1 | 91.4 | | 31/2 | 4.000 | +0.040 | -0.031 | 0.625 | 0.344 | 3.834 | -0.020 | 0.083 | 0.083 | 4.100 | | 90 | 101.6 | +1.02 | -0.79 | 15.88 | 8.74 | 97.38 | -0.51 | 2.11 | 2.1 | 104.1 | | 41/4 O.D. | 4.250 | +0.042 | -0.031 | 0.625 | 0.344 | 4.084 | -0.020 | 0.083 | 0.083 | 4.350 | | 108.0 | 108.0 | +1.07 | -0.79 | 15.88 | 8.74 | 103.73 | -0.51 | 2.11 | 2.1 | 110.5 | | 4 | 4.500 | +0.045 | -0.031 | 0.625 | 0.344 | 4.334 | -0.020 | 0.083 | 0.083 | 4.600 | | 100 | 114.3 | +1.14 | -0.79 | 15.88 | 8.74 | 110.08 | -0.51 | 2.11 | 2.1 | 116.8 | | 5¼ O.D. | 5.236 | +0.052 | -0.031 | 0.625 | 0.344 | 5.084 | -0.020 | 0.076 | 0.109 | 5.350 | | 133.0 | 133.0 | +1.32 | -0.79 | 15.88 | 8.74 | 129.13 | -0.51 | 1.93 | 2.8 | 135.9 | | 5½ 0.D. | 5.500 | +0.055 | -0.031 | 0.625 | 0.344 | 5.334 | -0.020 | 0.083 | 0.109 | 5.600 | | 139.7 | 139.7
5.563 | +1.40 | -0.79
-0.031 | 15.88
0.625 | 8.74
0.344 | 135.48
5.395 | -0.51
-0.022 | 2.11
0.084 | 2.8
0.109 | 142.2
5.660 | | 125 | 141.3 | +1.42 | -0.79 | 15.88 | 8.74 | 137.03 | -0.022 | 2.13 | 2.8 | 143.8 | | 6¼ O.D. | 6.259 | +0.063 | -0.031 | 0.625 | 0.344 | 6.084 | -0.022 | 0.088 | 0.109 | 6.350 | | 159.0 | 159.0 | +1.60 | -0.79 | 15.88 | 8.74 | 154.53 | -0.56 | 2.24 | 2.8 | 161.3 | | 6½ O.D. | 6.500 | +0.063 | -0.031 | 0.625 | 0.344 | 6.334 | -0.022 | 0.085 | 0.109 | 6.600 | | 165.1 | 165.1 | +1.60 | -0.79 | 15.88 | 8.74 | 160.88 | -0.56 | 2.16 | 2.8 | 167.6 | | 6 | 6.625 | +0.063 | -0.031 | 0.625 | 0.344 | 6.455 | -0.022 | 0.085 | 0.109 | 6.730 | | 150 | 168.3 | +1.60 | -0.79 | 15.88 | 8.74 | 163.96 | -0.56 | 2.16 | 2.8 | 170.9 | | 8 | 8.625 | +0.063 | -0.031 | 0.750 | 0.469 | 8.441 | -0.025 | 0.092 | 0.109 | 8.800 | | 200
10 | 219.1
10.750 | +1.60
+0.063 | -0.79 | 19.05
0.750 | 11.91
0.469 | 214.40
10.562 | -0.64
-0.027 | 2.34 | 2.8
0.134 | 223.5
10.920 | | 250 | 273.1 | +0.063 | -0.031
-0.79 | 19.05 | 11.91 | 10.562
268.27 | -0.027
-0.69 | 0.094
2.39 | 0.134
3.4 | 277.4 | | 12 | | +0.063 | -0.031 | 0.750 | 0.469 | 12.531 | -0.030 | 0.109 | 0.156 | 12.920 | | 300 | 323.9 | +1.60 | -0.79 | 19.05 | 11.91 | 318.29 | -0.76 | 2.77 | 4.0 | 328.2 | | | | +0.063 | -0.031 | 0.938 | 0.469 | 13.781 | -0.030 | 0.109 | 0.156 | 14.100 | | 355.6 | 355.6 | +1.60 | -0.79 | 23.83 | 11.91 | 350.04 | -0.76 | 2.77 | 4.0 | 358.1 | | | | +0.063 | -0.031 | 0.938 | 0.469 | 15.781 | -0.030 | 0.109 | 0.165 | 16.100 | | 406.4 | 406.4 | +1.60 | -0.79 | 23.83 | 11.91 | 400.84 | -0.76 | 2.77 | 4.2 | 408.9 | | | | +0.063 | -0.031 | 1.000 | 0.469 | 17.781 | -0.030 | 0.109 | 0.165 | 18.160 | | 457.2 | 457.2 | +1.60 | -0.79 | 25.40 | 11.91 | 451.64 | -0.76 | 2.77 | 4.2
0.188 | 461.3 | | 20 O.D.
508.0 | 20.000
508.0 | +0.063
+1.60 | -0.031
-0.79 | 1.000
25.40 | 0.469 | 19.781
<i>502.44</i> | -0.030
-0.76 | 0.109
2.77 | 0.188
4.8 | 20.160
<i>512.1</i> | | | | +0.063 | -0.79 | 1.000 | 0.500 | 23.656 | -0.030 | 0.172 | 0.218 | 24.200 | | 609.6 | 609.6 | +1.60 | -0.79 | 25.40 | 12.70 | 600.86 | -0.76 | 4.37 | 5.5 | 614.7 | | | | +0.093 | -0.031 | 1.750▼ | 0.625 | 29.500 | -0.063 | 0.250 | 0.250 | 30.200 | | 762.0 | 762.0 | 2.36 | 0.79 | 44.45 | 15.88 | 749.30 | 1.60 | 6.35 | 6.35 | 761.1 | | A DEL 13.1 | | | | | | | | | LANDROC | | Table of Contents Gruvlok Installation Pipe and **Gruvlok** Flange Data **Tech. Data** Weld Fitting and Steel Flange Data Bolt Templates Conversions General Welding Information Drop Nipple and Tee-Let Installation Pipe Thread Standards # **CUT GROOVE SPECIFICATIONS** COLUMN 1 - Nominal IPS Pipe size. Nominal ISO Pipe size. COLUMN 2 - IPS outside diameter. ISO outside diameter. COLUMN 3 & 4 - Gasket seat must be free from scores, seams, chips, rust or scale which may interfere with proper coupling assembly. **COLUMN 5** - The groove must be of uniform depth around the entire pipe circumference. (See column 6). **COLUMN 6** - Groove depth: for reference only. Groove must conform to the groove diameter "C" listed in column 5. COLUMN 7 - Minimum allowable wall thickness which may be cut grooved. Out of roundness: Difference between maximum O.D. and minimum O.D. measured at 90° must not exceed total O.D. tolerance listed (reference column 2). For IPS pipe, the maximum allowable tolerance from square cut ends is 0.03" for 1" thru $3^{1/2}$ "; 0.045" for 4" thru 6"; and 0.060" for sizes 8" and above measured from a true square line. For ISO size pipe, the maximum allowable tolerance from square cut ends is 0.75mm for sizes 25mm-80mm; 1.15mm for sizes 100mm-150mm; and 1.50mm for sizes 200mm and above, measured from a true square line. Beveled-End Pipe in conformance with ANSI B16.25 $(37^{1/2})^{\circ}$ is acceptable, however square cut is preferred. Not to be used with End Guard gaskets. ▼ "A" tolerance +0.030" / -0.060" (+0.77 / -1.54 mm) | | | | | | UT GRO | | | ICATION
IPE | ١ | | |--|----------------------------|-----------------|-----------------|-----------------------------|---------------------|----------------------|-------------------------|--------------------------|--------------------|--| | -1- | | -2- | | -3- | -4- | -{ | | -6- | -7- | | | Nom.
IPS Pipe | 0.D. | | | Gasket
Seat "A" | Groove
Width "B" | Groove Diameter "C" | | Actual
Groove | Min.
Allow. | | | Size | Actual | Tolerance | | ±0.030
±0.76 | ±0.030
±0.76 | Actual | Tol.
+0.000 | Depth "D"
(Ref. Only) | Wall
Thick. "T" | | | In./DN(mm) | In./mm | +In./mm | -In./mm | In./mm | In./mm | In./mm | -In./mm | In./mm | In./mm | | | 1 | 1.315 | +0.028 | -0.015 | 0.625 | 0.312 | 1.190 | -0.015 | 0.062 | 0.133 | | | 25 | 33.4 | +0.71 | -0.38 | 15.88 | 7.92 | 30.23 | -0.38 | 1.6 | 3.4 | | | 11/4
32 | 1.660
42.2 | +0.029
+0.74 | -0.016
-0.41 | 0.625
15.88 | 0.312
7.92 | 1.535
38.99 | -0.015
-0.38 | 0.062
1.6 | 0.140
3.6 | | | 11/2 | 1.900 | +0.019 | -0.019 | 0.625 | 0.312 | 1.775 | -0.015 | 0.062 | 0.145 | | | 40 | 48.3 | +0.48 | -0.48 | 15.88 | 7.92 | 45.09 | -0.38 | 1.6 | 3.7 | | | 2 | 2.375 | +0.024 | -0.024 | 0.625 | 0.312 | 2.250 | -0.015 | 0.062 | 0.154 | | | 50 | 60.3 | +0.61 | -0.61 | 15.88 | 7.92 | 57.15 | -0.38 | 1.6 | 3.9 | | | 2½
65 | 2.875
73.0 | +0.029
+0.74 | -0.029
-0.74 | 0.625
15.88 | 0.312
7.92 | 2.720
69.09 | -0.018
-0.46 | 0.078
2.0 | 0.187
4.8 | | | 3 O.D. | 2.996 | +0.030 | -0.030 | 0.625 | 0.312 | 2.845 | -0.40 | 0.076 | 0.188 | | | 76.1 | 76.1 | +0.76 | -0.76 | 15.88 | 7.92 | 72.26 | -0.46 | 1.9 | 4.8 | | | 3 | 3.500 | +0.035 | -0.031 | 0.625 | 0.312 | 3.344 | -0.018 | 0.078 | 0.188 | | | 80 | 88.9 | +0.89 | -0.79 | 15.88 | 7.92 | 84.94 | -0.46 | 2.0 | 4.8 | | | 3½ | 4.000 | +0.040 | -0.031 | 0.625 | 0.312 | 3.834 | -0.020 | 0.083 | 0.188 | | | 90
4 ¹ / ₄ 0.D. | 101.6
4.250 | +1.02
+0.042 | -0.79
-0.031 | 15.88
0.625 | 7.92
0.375 | 97.38
4.084 | -0.51
-0.020 | 2.1
0.083 | 4.8
0.203 | | | 108.0 | 108.0 | +1.07 | -0.031 | 15.88 | 9.53 | 103.73 | -0.020 | 2.1 | 5.2 | | | 4 | 4.500 | +0.045 | -0.031 | 0.625 | 0.375 | 4.334 | -0.020 | 0.083 | 0.203 | | | 100 | 114.3 | +1.14 | -0.79 | 15.88 | 9.53 | 110.08 | -0.51 | 2.1 | 5.2 | | | 51/4 O.D. | 5.236 | +0.052 | -0.031 | 0.625 | 0.375 | 5.084 | -0.020 | 0.076 | 0.203 | | | 133.0 | 133.0 | +1.32 | -0.79 | 15.88 | 9.53 | 129.13 | -0.51 | 1.9 | 5.2 | | | 5½ 0.D. | 5.500 | +0.055 | -0.031 | 0.625 | 0.375 | 5.334 | -0.020 | 0.083 | 0.203 | | | 139.7 | 139.7
5.563 | +1.40 | -0.79
-0.031 | 15.88
0.625 | 9.53
0.375 | 135.48
5.395 | -0.51
-0.022 | 2.1
0.084 | 5.2
0.203 | | | 125 | 141.3 | +0.000 | -0.79 | 15.88 | 9.53 | 137.03 | -0.022
-0.56 | 2.1 | 5.2 | | | 6½ 0.D. | 6.259 | +0.063 | -0.031 | 0.625 | 0.375 | 6.084 | -0.022 | 0.088 | 0.249 | | | 159.0 | 159.0 | +1.60 | -0.79 | 15.88 | 9.53 | 154.53 | -0.56 | 2.2 | 6.3 | | | 6½ 0.D. | 6.500 | +0.063 | -0.031 | 0.625 | 0.375 | 6.334 | -0.022 | 0.085 | 0.219 | | | 165.1 | 165.1 | +1.60 | -0.79 | 15.88 | 9.53 | 160.88 | -0.56 | 2.2 | 5.6 | | | 6
150 | 6.625
168.3 | +0.063
+1.60 | -0.031
-0.79 | 0.625
15.88 | 0.375
9.53 | 6.455
163.96 | -0.022
-0.56 | 0.085 | 0.219
5.6 | | | 8 | 8.625 | +0.063 | -0.031 | 0.750 | 0.437 | 8.441 | -0.025 | 0.092 | 0.238 | | | 200 | 219.1 | +1.60 | -0.79 | 19.05 | 11.10 | 214.40 | -0.64 | 2.3 | 6.1 | | | 10 | 10.750 | +0.063 | -0.031 | 0.750 | 0.500 | 10.562 | -0.027 | 0.094 | 0.250 | | | 250 | 273.1 | +1.60 | -0.79 | 19.05 | 12.70 | 268.27 | -0.69 | 2.4 | 6.4 | | | 12 | 12.750 | +0.063 | -0.031 | 0.750 | 0.500 | 12.531 | -0.030 | 0.109 | 0.279 | | | 300
14 O.D. | <i>323.9</i> 14.000 | +1.60
+0.063 | -0.79
-0.031 | 19.05
0.938 |
12.70
0.500 | <i>318.29</i> 13.781 | - <i>0.76</i>
-0.030 | 2.8
0.109 | 7.1
0.281 | | | 355.6 | 355.6 | +1.60 | -0.79 | 23.83 | 12.70 | 350.04 | -0.76 | 2.8 | 7.1 | | | 16 O.D. | 16.000 | +0.063 | -0.031 | 0.938 | 0.500 | 15.781 | -0.030 | 0.109 | 0.312 | | | 406.4 | 406.4 | +1.60 | -0.79 | 23.83 | 12.70 | 400.84 | -0.76 | 2.8 | 7.9 | | | 18 O.D. | 18.000 | +0.063 | -0.031 | 1.000 | 0.500 | 17.781 | -0.030 | 0.109 | 0.312 | | | 457.2 | 457.2 | +1.60 | -0.79 | 25.40 | 12.70 | 451.64 | -0.76 | 2.8 | 7.9 | | | 20 O.D. 508.0 | 20.000
508.0 | +0.063
+1.60 | -0.031
-0.79 | 1.000
25.40 | 0.500
12.70 | 19.781
502.44 | -0.030
-0.76 | 0.109
2.8 | 0.312
7.9 | | | 24 O.D. | 24.000 | +0.063 | -0.79 | 1.000 | 0.563 | 23.656 | -0.030 | 0.172 | 0.375 | | | 609.6 | 609.6 | +1.60 | -0.79 | 25.40 | 14.30 | 600.86 | -0.76 | 4.4 | 9.5 | | | 28 I.D. | 28.875 | +0.063 | -0.031 | 1.000 | 0.563 | 28.531 | -0.030 | 0.172 | 0.437 | | | 733.4 | 733.4 | +1.60 | -0.79 | 25.40 | 14.30 | 724.69 | -0.76 | 4.4 | 11.1 | | | 30 I.D. | 31.000 | +0.063 | -0.031 | 1.250 | 0.625 | 30.594 | -0.030 | 0.203 | 0.500 | | | 787.4
30 O.D. | 787.4
30.000 | +1.60
0.093 | - <i>0.79</i> | <i>31.75</i> 1.750 ▼ | 15.88
0.625 | 777.09
29.500 | - <i>0.76</i> | 5.2
0.250 | 12.7
0.625 | | | 762.0 | 762.0 | 2.36 | 0.031 | 44.45 | 15.88 | 749.30 | 1.60 | 6.35 | 15.88 | | | A DEL L 10 11 | | 2.00 | 0.70 | | | 1770.00 | | | | | Table of Contents uvlok Gruvlok 1. Data Installation Pipe and Gruvlok Flange Data Tech. Data Bolt Weld Fitting and Pipe Templates Steel Flange Data Flang General Welding Information Ten Conversions Gen Drop Nipple and Cor Tee-Let Installation Pipe Thread Standards Te # **CUT GROOVE END GUARD® SPECIFICATIONS** End Guard (EG) cut groove is designed for standard or heavier wall thickness pipe to be joined by HPR 7004 EG couplings. Gruvlok EG fittings are grooved in accordance with these dimensions. | END GUARD (EG) CUT GROOVE SPECIFICATIONS* | | | | | | | | | | | | | |---|--------------------------|-----------|---------|--------------------|---------|------------------------|------------------|---------------------------|--------|--------------------|------------------------|--| | -1- | -2- | | | -3- | | -4- | | -5- | | -6- | -7- | | | Nom.
IPS
Pipe
Size | Pipe
Outside Diameter | | | Gasket Seat
"A" | | Groove
Width
"B" | | Groove
Diameter
"C" | | Groove
Depth | Min.
Allow.
Wall | | | | Actual | Tolerance | | Actual | Tol.+/- | Actual | Tol.
(+0.010) | Actual | Tol. | (Ref. Only)
"D" | Thick.
"T" | | | In/DN(mm) | In./mm | +In./mm | -In./mm | In./mm | In./mm | In./mm | -In./mm | In./mm | In./mm | In./mm | In./mm | | | 2 | 2.375 | +0.024 | -0.024 | 0.562 | +0.010 | 0.255 | -0.005 | 2.250 | -0.015 | 0.062 | 0.154 | | | 50 | 60.3 | +0.61 | -0.61 | 14.27 | 0.25 | 6.48 | -0.13 | 57.15 | -0.38 | 1.6 | 4.0 | | | 21/2 | 2.875 | +0.029 | -0.029 | 0.562 | +0.010 | 0.255 | -0.005 | 2.720 | -0.018 | 0.078 | 0.188 | | | 65 | 73.0 | +0.74 | -0.74 | 14.27 | 0.25 | 6.48 | -0.13 | 69.09 | -0.46 | 2.0 | 4.8 | | | 3 | 3.500 | +0.035 | -0.031 | 0.562 | +0.010 | 0.255 | -0.005 | 3.344 | -0.018 | 0.078 | 0.188 | | | 80 | 88.9 | +0.89 | -0.79 | 14.27 | 0.25 | 6.48 | -0.13 | 84.94 | -0.46 | 2.0 | 4.8 | | | 4 | 4.500 | +0.045 | -0.031 | 0.605 | +0.015 | 0.305 | -0.005 | 4.334 | -0.020 | 0.083 | 0.203 | | | 100 | 114.3 | +1.14 | -0.79 | 15.37 | 0.38 | 7.75 | -0.13 | 110.08 | -0.51 | 2.1 | 5.2 | | | 5 | 5.563 | +0.056 | -0.031 | 0.605 | +0.015 | 0.305 | -0.005 | 5.395 | -0.022 | 0.084 | 0.203 | | | 125 | 141.3 | +1.42 | -0.79 | 15.37 | 0.38 | 7.75 | -0.13 | 137.03 | -0.56 | 2.1 | 5.2 | | | 6 | 6.625 | +0.063 | -0.031 | 0.605 | +0.015 | 0.305 | -0.005 | 6.455 | -0.022 | 0.085 | 0.219 | | | 150 | 168.3 | +1.60 | -0.79 | 15.37 | 0.38 | 7.75 | -0.13 | 163.96 | -0.56 | 2.2 | 5.6 | | | 8 | 8.625 | +0.063 | -0.031 | 0.714 | +0.015 | 0.400 | -0.010 | 8.441 | -0.025 | 0.092 | 0.238 | | | 200 | 219.1 | +1.60 | -0.79 | 18.14 | 0.38 | 10.16 | -0.254 | 214.40 | -0.64 | 2.3 | 6.1 | | | 10 | 10.750 | +0.063 | -0.031 | 0.714 | +0.015 | 0.400 | -0.010 | 10.562 | -0.027 | 0.094 | 0.250 | | | 250 | 273.1 | +1.60 | -0.79 | 18.14 | 0.38 | 10.16 | -0.25 | 268.27 | -0.69 | 2.4 | 6.4 | | | 12 | 12.750 | +0.063 | -0.031 | 0.714 | +0.015 | 0.400 | -0.010 | 12.531 | -0.030 | 0.109 | 0.279 | | | 300 | 323.9 | +1.60 | -0.79 | 18.14 | 0.38 | 10.16 | -0.25 | 318.29 | -0.76 | 2.8 | 7.1 | | ^{*}Refer to additional notes on page 34. End Guard (EG) roll groove is designed for lightwall pipe to be joined by HPR 7004 EG couplings. | | END GUARD (EG) ROLL GROOVE SPECIFICATIONS* | | | | | | | | | | | |--------------|--|--------------------------|---------|--------|--------------|--------|--------------------|-------------------|--------|--------------------|------------------------| | -1- | | -2- | | -3- | | -4- | | -5- | | -6- | -7- | | Nom.
IPS | Outs | Pipe
Outside Diameter | | | t Seat
A" | Wi | oove
idth
B" | Gro
Dian
"(| neter | Groove
Depth | Min.
Allow.
Wall | | Pipe
Size | Actual | Toler | ance | Actual | Tol.+/- | Actual | Tol.
(+0.010) | Actual | Tol. | (Ref. Only)
"D" | Thick.
"T" | | In/DN(mm) | In./mm | +In./mm | -In./mm | In./mm | In./mm | In./mm | -In./mm | In./mm | In./mm | In./mm | In./mm | | 2 | 2.375 | +0.024 | -0.024 | 0.572 | -0.020 | 0.250 | +0.015 | 2.250 | -0.015 | 0.062 | 0.065 | | 50 | 60.3 | +0.61 | -0.61 | +14.53 | -0.51 | 6.35 | 0.38 | 57.15 | -0.38 | 1.6 | 1.7 | | 21/2 | 2.875 | +0.029 | -0.029 | 0.572 | -0.020 | 0.250 | +0.015 | 2.720 | -0.018 | 0.078 | 0.083 | | 65 | 73.0 | +0.74 | -0.74 | +14.53 | -0.51 | 6.35 | 0.38 | 69.09 | -0.46 | 2.0 | 2.1 | | 3 | 3.500 | +0.035 | -0.031 | 0.572 | -0.020 | 0.250 | +0.015 | 3.344 | -0.018 | 0.078 | 0.083 | | 80 | 88.9 | +0.89 | -0.79 | +14.53 | -0.51 | 6.35 | 0.38 | 84.94 | -0.46 | 2.0 | 2.1 | | 4 | 4.500 | +0.045 | -0.031 | 0.610 | -0.020 | 0.300 | +0.020 | 4.334 | -0.020 | 0.083 | 0.083 | | 100 | 114.3 | +1.14 | -0.79 | +15.49 | -0.51 | 7.62 | 0.51 | 110.08 | -0.51 | 2.1 | 2.1 | | 5 | 5.563 | +0.056 | -0.031 | 0.610 | -0.020 | 0.300 | +0.020 | 5.395 | -0.022 | 0.084 | 0.109 | | 125 | 141.3 | +1.42 | -0.79 | +15.49 | -0.51 | 7.62 | 0.51 | 137.03 | -0.56 | 2.1 | 2.8 | | 6 | 6.625 | +0.063 | -0.031 | 0.610 | -0.020 | 0.300 | +0.020 | 6.455 | -0.022 | 0.085 | 0.109 | | 150 | 168.3 | +1.60 | -0.79 | +15.49 | -0.51 | 7.62 | 0.51 | 163.96 | -0.56 | 2.2 | 2.8 | | 8 | 8.625 | +0.063 | -0.031 | 0.719 | -0.020 | 0.390 | +0.020 | 8.441 | -0.025 | 0.092 | 0.109 | | 200 | 219.1 | +1.60 | -0.79 | +18.26 | -0.51 | 9.91 | 0.51 | 214.40 | -0.64 | 2.3 | 2.8 | | 10 | 10.750 | +0.063 | -0.031 | 0.719 | -0.020 | 0.390 | +0.020 | 10.562 | -0.027 | 0.094 | 0.134 | | 250 | 273.1 | +1.60 | -0.79 | +18.26 | -0.51 | 9.91 | 0.51 | 268.27 | -0.69 | 2.4 | 3.4 | | 12 | 12.750 | +0.063 | -0.031 | 0.719 | -0.020 | 0.390 | +0.020 | 12.531 | -0.030 | 0.109 | 0.156 | | 300 | 323.9 | +1.60 | -0.79 | +18.26 | -0.51 | 9.91 | 0.51 | 318.29 | -0.76 | 2.8 | 4.0 | ^{*}Refer to additional notes on page 34. Table of Gruvlok Gruvlok John Data Pipe and Flange Data Weld Fitting and Steel Flange Data Fl Templates General Welding Information Conversions Drop Nipple and ee-Let Installation Pipe Thread Standards ## **GRUVLOK® CTS COPPER SYSTEM** # **Roll Groove Specifications** | GRI | JVLO | K CTS | COP | PER SYST | EM – ROLL (| GROC | OVE SPE | CIFIC | ATIC | ONS | |------|----------------------------|-----------|----------------------------------|--|---------------------|--------|---------------------|--------------|-------------|----------------| | -1- | -2- | | | -3- | -4- | | -5- | | -7- | -8- | | Nom. | Tubing
Outside Diameter | | Gasket Seat Groove Width "A" "B" | | Groove Diameter "C" | | Nom.
Groove | Min. | Max. | | | Size | Actual | Tolerance | | +/- 0.03 in.
+/- 0.76mm +0.76/-0.00mm | | Actual | Tolerance
+0.000 | Depth
"D" | Wall
"T" | Flare
Diam. | | In. | In./mm | + In./mm | - In./mm | In./mm | In./mm | In./mm | -In./mm | In./mm | In./mm | In./mm | | 2 | 2.125 | 0.002 | 0.002 | 0.610 | 0.300 | 2.029 | -0.020 | 0.048 | 0.058 | 2.220 | | | 54.0 | 0.05 | 0.05 | 15.5 | 7.6 | 51.54 | -0.51 | 1.2 | 1.6 | 56.4 | | 2½ | 2.625 | 0.002 | 0.002 | 0.610 | 0.300 | 2.525 | -0.020 | 0.050 | 0.065 | 2.720 | | 2/2 | 66.7 | 0.05 | 0.05 | 15.5 | 7.6 | 64.14 | -0.51 | 1.3 | 1.7 | 69.1 | | 3 | 3.125 | 0.002 | 0.002 | 0.610 | 0.300 | 3.025 | -0.020 | 0.050 | DWV | 3.220 | | 3 | 79.4 | 0.05 | 0.05 | 15.5 | 7.6 | 76.84 | -0.51 | 1.3 | DVVV | 81.8 | | 4 | 4.125 | 0.002 | 0.002 | 0.610 | 0.300 | 4.019 | -0.020 | 0.053 | DWV | 4.220 | | 4 | 104.8 | 0.05 | 0.05 | 15.5 | 7.6 | 102.08 | -0.51 | 1.3 | DVVV | 107.2 | | _ | 5.125 | 0.002 | 0.002 | 0.610 | 0.300 | 4.999 | -0.020 | 0.053 | DWV | 5.220 | | 5 | 130.2 | 0.05 | 0.05 | 15.5 | 7.6 | 126.97 | -0.51 | 1.3 | DVVV | 132.6 | | 6 | 6.125 | 0.002 | 0.002 | 0.610 | 0.300 | 5.999 | -0.020 | 0.063 | DWV | 6.220 | | ь | 155.6 | 0.05 | 0.05 | 15.5 | 7.6 | 152.37 | -0.51 | 1.6 | DWV | 158.0 | | 0 | 8.125 | 0.002 | 0.004 | 0.610 | 0.300 | 7.959 | -0.020 | 0.083 | DIAA | 8.220 | | 8 | 206.4 | 0.05 | 0.10 | 15.5 | 7.6 | 202.16 | -0.51 | 2.1 | DWV | 208.8 | COLUMN 1 - Nominal tubing size ASTM B88 COLUMN 2 - Outside diameter of copper tubing per ASTM B88. Allowable tolerance from square cut ends is 0.030"/0.76mm for sizes 2"-3"; 0.045"/1.14mm for sizes 4-8" COLUMN 3 - Gasket seat must be free from scores, roll marks, indentations, grease and dirt which may interfere with gasket sealing. COLUMN 4 - Groove width is to be free from chips, dirt, etc. which may interfere with proper coupling assembly. COLUMN 5 - Groove diameter must be of uniform depth for the entire circumference of the tubing. See column 6. COLUMN 6 - Groove depth is for reference only; the groove diameter
must conform to column 5. COLUMN 7 - DWV (Drain, Waste and Vent Piping) per ASTM B306. COLUMN 8 - Maximum flare diameter is the OD at the most extreme tubing diameter. # DESIGN FACTORS # Gruvlok® Couplings #### MOVEMENT Each flexible design Gruvlok coupling can provide for pipe system movement up to the design maximum for the specific size and type coupling being utilized. Movement is possible in the Gruvlok coupling due to two factors: (1) designed-in clearance between the key of the coupling and the groove diameter and groove width, and (2) the gap between pipe ends joined by the coupling. ## LINEAR MOVEMENT: ## FLEXIBLE COUPLING LINEAR MOVEMENT Linear movement is accommodated within the coupling by allowing the pipe ends to move together or apart in response to pressure thrusts and temperature changes. The available linear movement provided by Standard Gruvlok couplings is shown below: | LINEAR MOVEMENT | | | | | | |-----------------|------------------|-----------------|--|--|--| | Sizes | Roll Groove Pipe | Cut Groove Pipe | | | | | 1" - 31/2" | 1/32" | 1/16" | | | | | 4" - 24" | 3/32" | 3/16" | | | | Represents Linear Movement Capabilities #### RIGID COUPLINGS Gruvlok rigid couplings Fig. 7400, Fig. 7401 and Fig. 7004 HPR are designed to provide a joint with the attributes of a welded or flanged connection. Therefore, these joints would remain in strict alignment and would resist deflection and linear movement during service. #### ANGULAR MOVEMENT: ## FLEXIBLE COUPLING ANGULAR MOVEMENT Designed-in clearances allow limited deflection of the pipe joint within the coupling, without introducing eccentric loads into the coupling joint. The maximum available angular movement of Gruvlok flexible couplings on roll groove joints is shown in the performance data for each coupling. The amount of angular flexibility varies for each coupling size and type. The values account for pipe, groove, and coupling tolerances. #### FLEXIBLE COUPLINGS Figs. 7000, 7001, 7003, 7010 are the flexible couplings provided in the Gruvlok product line. The following information on movement applies to these flexible couplings. #### **MOVEMENT - APPLICATIONS** # Gruvlok® Couplings #### THERMAL MOVEMENT A sufficient amount of coupling joints must be provided to accommodate the calculated movement (expansion or contraction) in a pipe run or segment thereof. #### EXAMPLE: A 200 foot long straight run of 4" steel cut grooved pipe between anchor points. Minimum Temperature: 40° F (4 .4° C) (at time of installation) . Maximum Oper . Temperature: 160° F (71 .1° C) . Thermal expansion tables show this system will expand a total of 1.80° due to the temperature change . #### **DESIGN QUESTION** How many couplings are required to account for the thermal growth? #### AVAILABLE LINEAR MOVEMENT PER FLEXIBLE COUPLING: Using the table on page 39, we see that there is 0 .188" linear movement per coupling (4" Flexible Coupling) #### **COUPLINGS REQUIRED** As indicated above, the total movement is 1.80". Thus, the number of couplings is determined as follows: No . of Couplings = Tot . Movement / Avail . Movement per Coupling FOR OUR EXAMPLE: No . of Couplings = $(1.80^{\circ}) / (0.187^{\circ}) = 9.6$, Therefore 10 couplings are needed #### POSITION OF COUPLINGS In order for the couplings to provide for the movement indicated by the above example, it would be necessary to install all couplings with the maximum gap between pipe ends. Conversely, if the thermal movement was contraction due to a reduction of system temperature, the coupling joints would have be installed with the pipe ends butted, thus accommodating the "shrink" of the pipe system. #### **COMBINED LINEAR & ANGULAR MOVEMENT** The clearance in the grooved coupling joint, will allow a limited capability for combined linear and angular movement. A partially deflected joint will not provide full linear movement capability. A fully deflected coupling joint provides no linear movement capability. The Gruvlok coupling will not allow for both maximum linear and maximum angular movement simultaneously. In systems where both are expected, additional joints may be required. ## **MOVEMENT - APPLICATIONS** # Gruvlok® Couplings #### **COMBINED LINEAR & ANGULAR MOVEMENT** Continued NOTE: Fully Deflected Joint Will Not Allow For Linear Expansion. In the example above, two couplings were added to account for thermal expansion and the other couplings accommodate only the misalignment. The additional stress from the combined movement is therefore relieved. #### ROTATIONAL MOVEMENT: Piping systems designed with Gruvlok Couplings can accommodate minor rotational movement from thermal expansion, settlement, vibration, or other similar movements. However, Gruvlok Couplings should never be used as a continuous swivel joint. **Before Pipe Rotation** After Pipe Rotation Utilizing the rotational capability of the Gruvlok Coupling, the pipe life of a slurry or similar coarse material piping system can be extended. For pipe rotation, the system must be shut down and internal pressure relieved. The pipe may then be rotated one-quarter turn, the couplings retightened, and service resumed. If performed on a regular basis, pipe rotation will evenly distribute wear over the entire inner surface of the pipe. #### **CURVE LAYOUT** #### DRAINAGE, BURIED SYSTEMS, ETC The flexible design of the Gruvlok coupling makes it ideal for use in a wide variety of systems in which random changes of the pipe direction can be accommodated by the Gruvlok coupling's angular deflection capability rather than requiring the use of special fittings. Pitched drainage systems, buried pipe systems where pipe laying conditions are subject to settlement, and exposed pipe systems laid on rough ground are but a few of the many types of pipe installations that present conditions where the functional capability of the Gruvlok coupling are useful. APFH-12.11 # **DEFLECTION FROM CENTERLINE** # Gruvlok® Couplings | FIG. 70 | 00, 7001, 700 | 01-2 & 7003 | |------------------|-----------------------|---------------------| | Nominal | Deflectio | n from & | | Size | Per Coupling | of Pipe | | In./DN(mm) | Degrees(')-Minutes(') | In./ft-mm/m | | 1 | 1° 22' | 0.29 | | 25
11/4 | 1° 5' | 0.23 | | 32 | 1 3 | 18.8 | | 11/2 | 0° 57' | 0.20 | | 2 | 0° 45' | 16.5
0.16 | | 50 | | 13.1 | | 21/2 | 0° 37' | 0.13 | | 65
3 O.D. | 0° 36′ | 10.9
0.13 | | 76.1 | | 10.4 | | 3
80 | 0° 31' | 0.11
<i>8.9</i> | | 31/2 | 0° 27' | 0.09 | | 90 | | 7.8 | | 100 | 1° 12' | 0.25
20.8 | | 4½ 0.D. | 1° 16′ | 0.26 | | 108.0 | | 22.0 | | 5
125 | 0° 58' | 0.20
16.8 | | 5½ 0.D. | 1° 2' | 0.21 | | 133.0 | | 17.9 | | 5½ 0.D.
139.7 | 0° 59′ | 0.20
17.0 | | 6 | 0° 49' | 0.17 | | 150 | 00.541 | 14.1 | | 6¼ 0.D.
159.0 | 0° 51' | 0.18
14.9 | | 6½ O.D. | 0° 50′ | 0.17 | | 165.1 | 20.071 | 13.1 | | 200 | 0° 37' | 0.13
10.9 | | 10 | 0° 30' | 0.11 | | 250 | 0° 25' | 8.7 | | 12
300 | 0° 25' | 0.09
7.3 | | 14 | 0° 23' | 0.08 | | 350
16 | 0° 20' | 6.7
0.07 | | 400 | 0 20 | 0.07
5.9 | | 18 | 0° 18' | 0.06 | | 450
20 | 0° 16' | 5.2
0.06 | | 500 | 0 10 | 4.7 | | 24 | 0° 13' | 0.05 | | 600
28" O.D. | 0° 11' | 3.9
0.04 | | 733.4 | | 3.2 | | 30" O.D. | 0° 10' | 0.04 | | 787.4 | | 3.0 | | FIG. 7010 | | | | | | | |--------------------|-----------------------|--------------|--|--|--|--| | Nominal | Deflection from € | | | | | | | Size | Per Coupling | of Pipe | | | | | | In./DN(mm) | Degrees(')-Minutes(') | In./ft-mm/m | | | | | | 2 x 1½
50 x 40 | 0° 45' | 0.16
13.1 | | | | | | 2½ x 2
65 x 50 | 0° 37' | 0.13
10.9 | | | | | | 3 x 2
80 x 50 | 0° 31' | 0.11
8.9 | | | | | | 3 x 2½
80 x 65 | 0° 31' | 0.11
8.9 | | | | | | 4 x 2
100 x 50 | 1° 12' | 0.25
20.8 | | | | | | 4 x 2½
100 x 65 | 1° 12' | 0.25
20.8 | | | | | | 4 x 3 | 1° 12' | 0.25
20.8 | | | | | | 5 x 4
125 x 100 | 1° 58' | 0.20
16.8 | | | | | | 6 x 4
150 x 100 | 0° 49' | 0.17
14.1 | | | | | | 6 x 5
150 x 125 | 0° 49' | 0.17
14.1 | | | | | | 8 x 6
200 x 150 | 0° 37' | 0.13
10.9 | | | | | | FIG. 7011 | | | | | |------------|-----------------------|-------------|--|--| | Nominal | Deflection from € | | | | | Size | Per Coupling | of Pipe | | | | In./DN(mm) | Degrees(')-Minutes(') | In./ft-mm/m | | | | 30 O.D. | 0° 16' | 0.06 | | | | 750 | | 4.7 | | | | RANGE OF PIPE END SEPARATION | | | | | | | |----------------------------------|---|--|------------------------------------|--|--|--| | Type of Coupling | 0- ½32 (0-0.79)
In./mm | 0-³ / ₃₂ (0-2.38)
In./mm | | | | | | Fig. 7000 | 1, 1½, 1½, 2, 2½, 3 0.D., 3, 3½ | 4, 4 ¹ / ₄ 0.D. 5, 5 ¹ / ₄ 0.D., 5 ¹ / ₂ 0.D.,
6, 6 ¹ / ₄ 0.D., 6 ¹ / ₂ 0.D., 8 | | | | | | LW Flexible Coupling | 25, 32, 40, 50, 65, 76.1, 80, 90 | 100, 108.0, 125, 133.0, 139.7
150, 159.0, 165.1, 200 | | | | | | Fig. 7001 | 1, 11/4, 11/2, 2, 21/2, 3 0.D., 3, 31/2 | 4, 5, 6, 6½ 0.D., 8, 10, 12, 14, 16, 18, 20, 24, 28 0.D., 30 0.D. | | | | | | Standard Coupling | 25, 32, 40, 50, 65, 76.1, 80, 90 | 100, 125, 150, 165.1, 200, 250, 300, 350, 400, 450, 500, 600, 733.4, 787.4 | Non | | | | | Fig. 7001-2
Standard Coupling | -
- | 14, 16, 18, 20, 24
350, 400, 450, 500, 600 | ninal | | | | | Fig. 7003
Hingelok Coupling | 1, 1¼, 1½, 2, 2½, 3
25, 32, 40, 50, 65, 80 | 4, 5, 6, 8
100, 125, 150, 200 | Nominal Coupling Sizes (In./DN(mm) | | | | | Fig. 7010 | 2 x 1½, 2½ x 2, 3 x 2, 3 x 2½ | 4 x 2, 4 x 2½, 4 x 3, 5 x 4,
6 x 4, 6 x 5, 8 x 6 | ng Siz | | | | | Reducing Coupling | 50 x 40, 65 x 50, 80 x 50, 80 x 65 | 100 x 50, 100 x 65, 100 x 80, 125 x 100,
150 x 100, 150 x 125, 200 x 150 | es (lı | | | | |
Fig. 7011
Standard Coupling | | e End Separation for
Coupling is 0-9/64 (0-3.57) | n./DN(| | | | | Fig. 7400
Rigidlite Coupling | 1, 1¼, 1½, 2, 2½, 3 0.D., 3
25, 32, 40, 50, 65, 76.1, 80 | 4, 5, 5½ 0.D., 6, 6½ 0.D., 8
100, 125, 139.7, 150, 165.1, 200 | mm) | | | | | Fig. 7401 | 1½, 2, 2½, 3 0.D., 3 | 4, 5, 5½ 0.D., 6, 6½ 0.D., 8,
10, 12, 14, 16, 18, 20, 24 | | | | | | Rigidlok Coupling | 40, 50, 65, 76.1, 80 | 100, 125, 139.7, 150, 165.1, 200, 250, 300, 350, 400, 450, 500, 600 | | | | | | Fig. 7401-2
Rigidlok Coupling | -
- | 14, 16, 18, 20, 24
350, 400, 450, 500, 600 | | | | | | Fig. 7042 Outlet Coupling | | | | | | | | No | Range of | | | |------------|-----------------------------------|--------------|--| | Run | | Outlet | Pipe End | | Kuli | FPT F | MPT/Grv. M/G | Separation | | In./DN(mm) | In./mm | In./mm | In./mm | | | 1/ ₂
15 | _ | ³ /4 -1 ¹ / ₁₆
19-27 | | 11/2 | 3/4 | | ³ / ₄ -1 ¹ / ₁₆ | | 40 | 20 | _ | 19-27 | | | 1
25 | _ | 3/4 -1 1/ ₁₆
19-27 | | | 1/2 | _ | ¹¹ / ₁₆ -1 | | _ | 15 | | 17-25 | | 2 | 3/4 | _ | 11/16-1 | | 50 | 20 | | 17-25 | | | 1
25 | 1
25 | ¹¹ / ₁₆ -1
17-25 | | | 1/2 | _ | 13/16-11/2 | | | 15 | | 30-38 | | | ³ / ₄
20 | | 1 ³ / ₁₆ -1 ¹ / ₂
30-38 | | 2½ | 1
25 | _ | 1 ³ / ₁₆ -1 ¹ / ₂
30-38 | | 65 | _ | 1½
32 | 1 ³ / ₁₆ -1 ¹ / ₂
30-38 | | | | 11/2 | 13/16-11/2 | | | _ | 40 | 30-38 | | | | | | | No | Range of | | | | |------------|-----------------------------------|----------------|--|--| | Run | | Outlet | Pipe End | | | nuii | FPT F | MPT/Grv. M/G | Separation | | | In./DN(mm) | In./mm | In./mm | In./mm | | | | ³ / ₄
20 | _ | 1 ³ / ₁₆ -1 ¹ / ₂
30-38 | | | 3
80 | 1 25 | 1
25 | 1 ³ / ₁₆ -1 ¹ / ₂
30-38 | | | | _ | 1½
40 | 1 ³ / ₁₆ -1 ¹ / ₂
30-38 | | | | 3/ ₄
20 | _ | 1 ⁹ / ₁₆ -1 ⁷ / ₈
40-48 | | | 4 | 1 25 | _ | 1 ⁹ / ₁₆ -1 ⁷ / ₈
40-48 | | | 100 | | 1½
40 | 1%16-17/8
40-48 | | | | _ | 40
2
50 | 1 ⁹ / ₁₆ -1 ⁷ / ₈
40-48 | | | | 1 25 | _ | 15/8-115/16
41-51 | | | 6
150 | 1½
40 | 1½
40 | 15/8-115/16
41-51 | | | | | 2
50 | 15/8-115/16
41-51 | | Table of Contents Gruvlok Installation (Pipe and Gruvlok Flange Data Tech. Data Weld Fitting and General Welding Information Conversions Drop Nipple and Tee-Let Installation # **GRUVLOK® FITTING FOR GROOVED-END PIPE** | | | DATA – F
SED AS EC | | | | | |------------------|-----------------------|-----------------------|-----------------------|-------------|-----------------|-----------------------| | Nominal | 0.0 | Pipe Wall | Elb | ow | Te | ее | | Size | 0.D. | Thickness | 90° | 45° | Branch | Run | | In./DN(mm) | In./mm | In./mm | Ft./m | Ft./m | Ft./m | Ft./m | | 1 | 1.315 | 0.133 | 1.7 | 0.9 | 4.4 | 1.7 | | 25 | 33.4 | 3.4 | 0.5 | 0.3 | 1.3 | 0.5 | | 11/4 | 1.660 | 0.140 | 2.3 | 1.2 | 5.8 | 2.3 | | 32 | 42.2 | 3.6 | 0.7 | 0.4 | 1.8 | 0.7 | | 11/2 | 1.900 | 0.145 | 2.7 | 1.3 | 6.7 | 2.7 | | 40 | 48.3 | 3.7 | 0.8 | 0.4 | 2.0 | 0.8 | | 2 | 2.375 | 0.154 | 3.4 | 1.7 | 8.6 | 3.4 | | 50 | 60.3 | 3.9 | 1.0 | 0.5 | 2.6 | 1.0 | | 2½
65 | 2.875
73.0 | 0.203
5.2 | 4.1 <i>1.2</i> | 2.1
0.6 | 10.3
3.1 | 4.1 <i>1.2</i> | | 3 O.D. | 2.996 | 0.197 | 4.3 | 2.2 | 10.8 | 4.3 | | 76.1 | 76.1 | 5.0 | 1.3 | 0.7 | 3.3 | 1.3 | | 3 | 3.500 | 0.216 | 5.1 | 2.6 | 12.8 | 5.1 | | 80 | 88.9 | 5.5 | 1.6 | 0.8 | 3.9 | 1.6 | | 41/4 O.D. | 4.250 | 0.220 | 6.4 | 3.2 | 16.1 | 6.4 | | 108.0 | 108.0 | 5.6 | 2.0 | 1.0 | 4.9 | 2.0 | | 4 | 4.500 | 0.237 | 6.7 | 3.4 | 16.8 | 6.7 | | 100 | 114.3 | 6.0 | 2.0 | 1.0 | 5.1 | 2.0 | | 51/4 O.D. | 5.236 | 0.248 | 8.0 | 4.0 | 20.1 | 8.0 | | 133.0 | 133.0 | 6.3 | 2.4 | 1.2 | 6.1 | 2.4 | | 5½ 0.D. | 5.500 | 0.248 | 8.3 | 4.2 | 20.9 | 8.3 | | 139.7 | 139.7 | 6.3 | 2.5 | 1.3 | 6.4 | 2.5 | | 5 | 5.563 | 0.258 | 8.4 | 4.2 | 21.0 | 8.4 | | 125 | 141.3 | 6.6 | 2.6 | 1.3 | 6.4 | 2.6 | | 6½ 0.D. | 6.259 | 0.280 | 9.7 | 4.9 | 24.3 | 9.7 | | 159.0
6½ 0.D. | 159.0 | 7.1 0.280 | 3.0
10.0 | 1.5
5.0 | 7.4 24.9 | 3.0
10.0 | | 165.1 | 6.500
165.1 | 7.1 | 3.0 | 1.5 | 7.6 | 3.0 | | 6 | 6.625 | 0.280 | 10.1 | 5.1 | 25.3 | 10.1 | | 150 | 168.3 | 7.1 | 3.1 | 1.6 | 7.7 | 3.1 | | 8 | 8.625 | 0.322 | 13.3 | 6.7 | 33.3 | 13.3 | | 200 | 219.1 | 8.2 | 4.1 | 2.0 | 10.1 | 4.1 | | 10 | 10.750 | 0.365 | 16.7 | 8.4 | 41.8 | 16.7 | | 250 | 273.1 | 9.3 | 5.1 | 2.6 | 12.7 | 5.1 | | 12 | 12.750 | 0.375 | 20.0 | 10.0 | 50.0 | 20.0 | | 300 | 323.9 | 9.5 | 6.1 | 3.0 | 15.2 | 6.1 | | 14 | 14.000 | 0.375 | 22.2 | 17.7 | 64.2 | 22.9 | | 350 | 355.6 | 9.5 | 6.8 | 5.4 | 19.6 | 7.0 | | 16 | 16.000 | 0.375 | 25.5 | 20.4 | 73.9 | 26.4 | | 400
18 | 406.4 | 9.5
0.375 | 7.8 | 6.2 | 22.5 | 8.0 | | 450 | 18.000
457.2 | 9.5 | 28.9
8.8 | 23.1
7.0 | 87.2
26.6 | 31.1
9.5 | | 20 | 20.000 | 0.375 | 32.2 | 25.7 | 97.3 | 34.8 | | 500 | 508.0 | 9.5 | 9.8 | 7.8 | 29.7 | 10.6 | | 24 | 24.000 | 0.375 | 38.9 | 31.1 | 113.0 | 40.4 | | 600 | 609.6 | 9.5 | 11.9 | 9.5 | 34.4 | 12.3 | For the reducing tee and branches, use the value that is corresponding to the branch size. For example: for $6" \times 6" \times 3"$ tee, the branch value of 3" is 12.8 ft (3.9). ## **GRUVLOK® FITTING FOR GROOVED-END PIPE** | GRUVLOK FITTINGS | | | | | | | | |------------------|--------|------------------------|------------------------|------------------|--|--|--| | Nominal | | Cei | nter to End Dimensio | ons | | | | | Size | 0.D. | FIG. 7050
90° ELBOW | FIG. 7051
45° ELBOW | FIG. 7060
TEE | | | | | In./DN(mm) | In./mm | In./mm | In./mm | In./mm | | | | | 1 | 1.315 | 2½ C | 1¾ C | 2¼ C | | | | | 25 | 33.4 | 57 | 44 | 57 | | | | | 11/4 | 1.660 | 2¾ C | 1¾ C | 2¾ C | | | | | 32 | 42.2 | 70 | 44 | 70 | | | | | 1½ | 1.900 | 2¾ C | 1¾ C | 2¾ C | | | | | 40 | 48.3 | 70 | 44 | 70 | | | | | 2 50 | 2.375 | 3½ C | 2 C | 3½ C | | | | | | 60.3 | 83 | 51 | 83 | | | | | 2½ | 2.875 | 3¾ C | 2½ C | 3¾ C | | | | | 65 | 73.0 | 95 | 57 | 95 | | | | | 3 O.D. | 2.996 | 4 C | 2½ C | 4 C | | | | | 76.1 | 76.1 | 102 | 64 | 101 | | | | | 3 | 3.500 | 4½ C | 2½ C | 4½ C | | | | | 80 | 88.9 | 108 | 64 | 108 | | | | | 3½ | 4.000 | 4½ C | 2¾ C | 4½ C | | | | | 90 | 101.6 | 114 | 70 | 114 | | | | | 4½ 0.D. | 4.250 | 4¾ C | 2º/s C | 4¾ C | | | | | 108.0 | 108.0 | 121 | 83 | 121 | | | | | 4 | 4.500 | 5 C | 3 C | 5 C | | | | | | 114.3 | 127 | 76 | 127 | | | | | 5¼ 0.D. | 5.236 | 5¼ C | 31/4 C | 5¼ C | | | | | 133.0 | 133.0 | 133 | 83 | 133 | | | | | 5½ O.D. | 5.500 | 5¼ C | 31/4 C | 5½ C | | | | | 139.7 | 139.7 | 133 | 83 | 140 | | | | | 5 | 5.563 | 5½ C | 31/4 C | 5½ C | | | | | 125 | 141.3 | 140 | 83 | 140 | | | | | 6½ 0.D. | 6.259 | 6 C | 3½ C | 6 C | | | | | 159.0 | 159.0 | 152 | 89 | 152 | | | | | 6½ 0.D. | 6.500 | 6½ C | 3½ C | 6½ C | | | | | 165.1 | 165.1 | 165 | 89 | 165 | | | | | 6 | 6.625 | 6½ C | 3½ C | 6½ C | | | | | 150 | 168.3 | 165 | 89 | 165 | | | | | 8 | 8.625 | 7¾ C | 4¼ C | 7¾ C | | | | | 200 | 219.1 | 197 | 108 | 197 | | | | | 10 | 10.750 | 9 C | 4¾ C | 9 C | | | | | 250 | 273.1 | 229 | 121 | 229 | | | | | 12 | 12.750 | 10 C | 5½ C | 10 C | | | | | 300 | 323.9 | 254 | 133 | 254 | | | | C - Cast malleable or ductile iron, all others are fabricated steel. Center to end dimensions may differ from those shown in chart, contact an Anvil Rep. for more information. Table of Contents or Gruvlok Data Installation Pipe and Gr lange Data Tec Weld Fitting and Pip General Welding Finformation Terr Conversions Gen Drop Nipple and Tee-Let Installation Pipe Thread Standards 1 # **GRUVLOK® FITTING FOR GROOVED-END PIPE** # **GRUVLOK FITTINGS** | FIG. 7072 CONCENTRIC REDUCER | | | | | |------------------------------|--------------------------|---------------|--|--| | | Nominal Size | End
to End | | | | | In./DN(mm) | In./mm | | | | 11/4 X | 1 | 21/2 | | | | 32 x | 25 | 64 | | | | 1½ x | 1, 11/4 | 21/2 | | | | | 25, 32 | 64 | | | | 2 x | 1, 11/4*, 11/2* | 21/2 | | | | 50 x | 25, 32, 40 | 64 | | | | 2½ x | 1, 11/4, 11/2, 2* | 21/2 | | | | 65 x | 25, 32, 40, 50 | 64 | | | | 3 x | 1, 11/4, 11/2, 2*, 21/2* | 21/2 | | | | 80 x | 25, 32, 40, 50, 65 | 64 | | | | 3½ x | 3 | 3 | | | | 90 x | 80 | 76 | | | | FIG. | 7072 CONCENTRIC REDUC | CER | |-------|------------------------------------|---------------| | | Nominal Size | End
to End | | | In./DN(mm) | In./mm | | 4 x | 1, 11/4, 11/2, 2*, 21/2*, 3*, 31/2 | 3 | | | 25, 32, 40, 50, 65, 80, 90 | 76 | | 5 x | 2, 21/2, 3, 4* | 31/2 | | | 50, 65, 80, 100 | 89 | | 6 x | 1, 1½, 2*, 2½, 3*, 4*, 5* | 4 | | 150 x | 25, 40, 50, 65, 80, 100, 125 | 102 | | 8 x | 3, 4*, 5, 6* | 5 | | 200 x | 80, 100, 125, 150 | 127 | | 10 x | 4, 5, 6*, 8 | 6 | | 250 x | 100, 125, 150, 200 | 152 | | | 4, 6, 8, 10 | 7 | | 300 x | 100, 150, 200, 250 | 178 | ^{* -} Cast malleable or ductile iron, all others are fabricated steel. | | STA | NDARD W | EIGHT PIPI | E DATA | | |---|--|---|--------------------------------|--|---| | Nominal
Pipe
Diameter
(Inches) | Actual
Inside
Diameter
(Inches) | Actual
Outside
Diameter
(Inches) | Weight
per Foot
(Pounds) | Length in Feet
containing
One Cubic Foot
(Feet) | Gallons
in One
Linear Foot
(Gallons) | | 1/8 | 0.269 | 0.405 | 0.245 | 2,526.000 | 0.0030 | | 1/4 | 0.364 | 0.540 | 0.425 | 1,383.800 | 0.0054 | | 3/8 | 0.493 | 0.675 | 0.568 | 754.360 | 0.0099 | | 1/2 | 0.622 | 0.840 | 0.851 | 473.910 | 0.0158 | | 3/4 | 0.824 | 1.050 | 1.131 | 270.030 | 0.0277 | | 1 | 1.049 | 1.315 | 1.679 | 166.620 | 0.0449 | | 11/4 | 1.380 | 1.660 | 2.273 | 96.275 | 0.0777 | | 11/2 | 1.610 | 1.900 | 2.718 | 70.733 | 0.1058
 | 2 | 2.067 | 2.375 | 3.653 | 49.913 | 0.1743 | | 21/2 | 2.469 | 2.875 | 5.793 | 30.077 | 0.2487 | | 3 | 3.068 | 3.500 | 7.580 | 19.479 | 0.3840 | | 31/2 | 3.548 | 4.000 | 9.110 | 14.565 | 0.5136 | | 4 | 4.026 | 4.500 | 10.790 | 11.312 | 0.6613 | | 5 | 5.047 | 5.563 | 14.620 | 7.198 | 1.0393 | | 6 | 6.065 | 6.625 | 18.970 | 4.984 | 1.5008 | | 8 | 7.981 | 8.625 | 28.550 | 2.878 | 2.5988 | | 10 | 10.020 | 10.750 | 40.480 | 1.826 | 4.0963 | ## Barlow's Formula Barlow's Formula is a safe, easy method for finding the relationship between internal fluid pressure and stress in the pipe wall. The formula predicts bursting pressures that have been found to be safely within the actual test bursting pressures. It is interesting to note that the formula uses the "outside diameter" of pipe and is sometimes referred to as the "outside diameter formula." Where: P = internal units pressure, in psi S = unit stress, in psi D = outside diameter of pipe, in inches t = wall thickness, in inches # Commercial Pipe Sizes and Wall Thicknesses # This table lists standard pipe sizes and wall thicknesses, or specifically: - 1. Traditional standard weight, extra strong & durable extra strong pipe. - 2. Pipe wall thickness in ASME B36.10 for carbon steel. | | XX
Strong | 1 | | | 0.294 | 0.308 | 0.358 | 0.382 | 0.400 | 0.436 | 0.552 | 0.600 | 0.636 | 0.674 | 0.750 | |--|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------| | | X
Strong | 0.095 | 0.119 | 0.126 | 0.147 | 0.154 | 0.179 | 0.191 | 0.200 | 0.218 | 0.276 | 0.300 | 0.318 | 0.337 | 0.375 | | | Sch.
160 | , | , | , | 0.187 | 0.219 | 0.250 | 0.250 | 0.281 | 0.344 | 0.375 | 0.437 | | 0.531 | 0.625 | | | Sch.
140 | | | | | | | | 1 | | | | | 1 | , | | | Sch
120 | | | | | | | 1 | 1 | | 1 | | 1 | 0.438 | 0.500 | | ESSES | Sch
100 | | | | | 1 | 1 | 1 | 1 | | 1 | | 1 | | 1 | | ICKN | Sch
80S | 0.095 | 0.119 | 0.126 | 0.147 | 0.154 | 0.179 | 0.191 | 0.200 | 0.218 | 0.276 | 0.300 | 0.318 | 0.337 | 0.375 0.375 | | COMMERCIAL PIPE SIZES AND WALL THICKNESSES | Sch
80 | 0.095 | 0.119 | 0.126 | 0.147 | 0.154 | 0.179 | 0.191 | 0.200 | 0.218 | 0.276 | 0.300 | 0.318 | 0.337 | 0.375 | | D WA | Sch
60 | | | | | | | 1 | 1 | | 1 | | 1 | | 1 | | S AN | Sch
40S | 0.068 | 0.088 | 0.091 | 0.109 | 0.113 | 0.133 | 0.140 | 0.145 | 0.154 | 0.203 | 0.216 | 0.226 | 0.237 | 0.258 | | E SIZI | Sch
40 | 0.068 | 0.088 | 0.091 | 0.109 | 0.113 | 0.133 | 0.140 | 0.145 | 0.154 | 0.203 | 0.216 | 0.226 | 0.237 | 0.258 | | AL PIP | Sch
Std. | 0.068 | 0.088 | 0.091 | 0.109 | 0.113 | 0.133 | 0.140 | 0.145 | 0.154 | 0.203 | 0.216 | 0.226 | 0.237 | 0.258 | | ERCI, | Sch
30 | | ı | | , | 1 | | 1 | 1 | 1 | 1 | | | , | , | | OMN | Sch
20 | 1 | | | | | | 1 | 1 | | | | | 1 | ı | | O | Sch
10S | 0.049 | 0.065 | 0.065 | 0.083 | 0.083 | 0.109 | 0.109 | 0.109 | 0.109 | 0.120 | 0.120 | 0.120 | 0.120 | 0.134 | | | Sch
10 | 0.049 | 0.065 | 0.065 | 0.083 | 0.083 | 0.109 | 0.109 | 0.109 | 0.109 | 0.120 | 0.120 | 0.120 | 0.120 | 0.134 | | | Sch
5S | 1 | , | , | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.083 | 0.083 | 0.083 | 0.083 | 0.109 | | | Outside
Dia. (IN) | 0.405 | 0.540 | 0.675 | 0.840 | 1.050 | 1.315 | 1.660 | 1.900 | 2.375 | 2.875 | 3.500 | 4.000 | 4.500 | 5.563 | | | Nom.
Pipe
Size | 1/8 | 1/4 | 3/8 | 1/2 | 3/4 | - | 11/4 | 11/2 | 2 | 21/2 | က | 31/2 | 4 | 2 | NOTE: All dimensions in inches & thicknesses are nominal or average wall thickness. Actual thickness may be as much as 12.5% under nominal due to mill tolerance. | 0.864 | | | | | | | | | | | | | | | | | |-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 0.875 | 1.000 | 1.000 | | - | - | - | 1 | - | 1 | , | - | - | 1 | - | - | | 0.432 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | | 0.719 | 0.906 | 1.125 | 1.312 | 1.406 | 1.594 | 1.781 | 1.969 | 2.125 | 2.344 | | 1 | | | 1 | | | | | 0.812 | 1.000 | 1.125 | 1.250 | 1.438 | 1.562 | 1.750 | 1.875 | 2.062 | | | | | | | | | 0.562 | 0.719 | 0.844 | 1.000 | 1.094 | 1.219 | 1.375 | 1.500 | 1.625 | 1.812 | | | | | | | | | | 0.594 | 0.719 | 0.844 | 0.938 | 1.031 | 1.156 | 1.281 | 1.375 | 1.531 | 1 | 1 | | | | , | | | 0.432 | 0.500 | 0.500 | 0.500 | , | ı | ı | | , | , | 1 | , | | | | | | | 0.432 | 0.500 | 0.594 | 0.688 | 0.750 | 0.844 | 0.938 | 1.031 | 1.125 | 1.219 | | , | | | , | | | | | 0.406 | 0.500 | 0.562 | 0.594 | 0.656 | 0.750 | 0.812 | 0.875 | 0.969 | , | , | | | 1 | , | | | 0.280 | 0.322 | 0.365 | 0.375 | , | | | , | | , | , | , | | | | , | | | | 0.322 | 0.365 | 0.406 | 0.438 | 0.500 | 0.562 | 0.594 | , | 0.688 | , | , | | 0.688 | 0.688 | 0.750 | 0.750 | | 0.280 | 0.322 | 0.365 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | | | 0.277 | 0.307 | 0.330 | 0.375 | 0.375 | 0.438 | 0.500 | 0.500 | 0.562 | | 0.625 | 0.625 | 0.625 | 0.625 | 0.625 | 0.625 | | | 0.250 | 0.250 | 0.250 | 0.312 | 0.312 | 0.312 | 0.375 | 0.375 | 0.375 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | | 0.134 | 0.148 | 0.165 | 0.180 | 0.188 | 0.188 | 0.188 | 0.218 | 0.218 | , | , | , | 0.312 | | , | , | | | 0.134 | 0.148 | 0.165 | 0.180 | 0.250 | 0.250 | 0.250 | 0.250 | 0.250 | 0.250 | 0.312 | 0.312 | 0.312 | 0.312 | 0.312 | 0.312 | | | 0.109 | 0.109 | 0.134 | 0.156 | 0.156 | 0.165 | 0.165 | 0.188 | 0.188 | 0.218 | , | , | 0.250 | | , | , | , | | 6.625 | 8.625 | 10.750 | 12.750 | 14.000 | 16.000 | 18.000 | 20.000 | 22.000 | 24.000 | 26.000 | 28.000 | 30.000 | 32.000 | 34.000 | 36.000 | 42.000 | | 9 | ∞ | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 42 | All dimensions shown are in inches. Pipe Thread Drop Nipple and Table of Contents Gruvlok Gruvlok Weld Fitting and General Welding Conversions # Steel Pipe Data | | | SCHEDULE I | NO. 40 & 80 |) | | |-----------|--------|--------------|----------------|--------------------|-----------------------------| | Pipe Size | 0.D. | Schedule No. | Wall Thickness | Weight
per Foot | Weight of
Water per Foot | | In. | In. | - | In. | Lbs. | Lbs. | | 3/8 | 0.675 | 40 | 0.091 | 0.567 | 0.083 | | /8 | 0.073 | 80 | 0.126 | 0.738 | 0.061 | | 1/2 | 0.840 | 40 | 0.109 | 0.850 | 0.132 | | /2 | 0.040 | 80 | 0.147 | 1.087 | 0.101 | | 3/4 | 1.050 | 40 | 0.113 | 1.130 | 0.230 | | /4 | 1.000 | 80 | 0.154 | 1.473 | 0.186 | | 1 | 1.315 | 40 | 0.133 | 1.678 | 0.374 | | ' | 1.010 | 80 | 0.179 | 2.171 | 0.311 | | 11/4 | 1.660 | 40 | 0.140 | 2.272 | 0.647 | | 174 | 1.000 | 80 | 0.191 | 2.996 | 0.555 | | 1½ | 1.900 | 40 | 0.145 | 2.717 | 0.882 | | 172 | 1.500 | 80 | 0.200 | 3.631 | 0.765 | | 2 | 2.375 | 40 | 0.154 | 3.652 | 1.452 | | _ | 2.070 | 80 | 0.218 | 5.022 | 1.279 | | 21/2 | 2.875 | 40 | 0.203 | 5.790 | 2.072 | | 2,2 | 2.070 | 80 | 0.276 | 7.660 | 1.834 | | 3 | 3.500 | 40 | 0.216 | 7.570 | 3.200 | | ŭ | 0.000 | 80 | 0.300 | 10.250 | 2.860 | | 31/2 | 4.000 | 40 | 0.226 | 9.110 | 4.280 | | 0,2 | | 80 | 0.318 | 12.510 | 3.850 | | 4 | 4.500 | 40 | 0.237 | 10.790 | 5.510 | | - | | 80 | 0.337 | 14.980 | 4.980 | | 5 | 5.563 | 40 | 0.258 | 14.620 | 8.660 | | | | 80 | 0.375 | 20.780 | 7.870 | | 6 | 6.625 | 40 | 0.280 | 18.970 | 12.510 | | | | 80 | 0.432 | 28.570 | 11.290 | | 8 | 8.625 | 40 | 0.322 | 28.550 | 21.600 | | | | 80
40 | 0.500 | 43.390
40.480 | 19.800 | | 10 | 10.750 | 80 | 0.365
0.593 | 64.400 | 34.100
31.100 | | | | 40 | 0.393 | 53.600 | 48.500 | | 12 | 12.75 | 80 | 0.406 | 88.600 | 44.000 | | | | 40 | 0.437 | 63.000 | 58.500 | | 14 | 14.000 | 80 | 0.457 | 107.000 | 51.200 | | | | 40 | 0.730 | 83.000 | 76.500 | | 16 | 16.000 | 80 | 0.843 | 137.000 | 69.700 | | | | 40 | 0.563 | 105.000 | 97.200 | | 18 | 18.000 | 80 | 0.937 | 171.000 | 88.500 | | | | 40 | 0.593 | 123.000 | 120.400 | | 20 | 20.000 | 80 | 1.031 | 209.000 | 109.400 | | | | 40 | 0.687 | 171.000 | 174.200 | | 24 | 24.000 | 80 | 1.218 | 297.000 | 158.200 | | 30 | 30.000 | 20 | 0.500 | 158.000 | 286.000 | | 36 | 36.000 | API | 0.500 | 190.000 | 417.000 | # Copper Tube Data | | | TYI | PE L | | | |-----------|-------------|--------|----------------|--------------------|-----------------------------| | Tube Size | O.D. Tubing | 0.D. | Wall Thickness | Weight
per Foot | Weight of
Water per Foot | | In. | In. | In. | In. | Lbs. | Lbs. | | 1/4 | 3/8 | 0.375 | 0.030 | 0.126 | 0.034 | | 3/8 | 1/2 | 0.500 | 0.035 | 0.198 | 0.062 | | 1/2 | 5/8 | 0.625 | 0.040 | 0.285 | 0.100 | | 5/8 | 3/4 | 0.750 | 0.042 | 0.362 | 0.151 | | 3/4 | 7/8 | 0.875 | 0.045 | 0.455 | 0.209 | | 1 | 11/8 | 1.125 | 0.050 | 0.655 | 0.357 | | 11/4 | 1% | 1.375 | 0.055 | 0.884 | 0.546 | | 1½ | 15/8 | 1.625 | 0.060 | 1.140 | 0.767 | | 2 | 21/8 | 2.125 | 0.070 | 1.750 | 1.341 | | 21/2 | 25/8 | 2.625 | 0.080 | 2.480 | 2.064 | | 3 | 31//8 | 3.125 | 0.090 | 3.330 | 2.949 | | 31/2 | 35/8 | 3.625 | 0.100 | 4.290 | 3.989 | | 4 | 41/8 | 4.125 | 0.110 | 5.380 | 5.188 | | 5 | 51/8 | 5.125 | 0.125 | 7.610 | 8.081 | | 6 | 61/8 | 6.125 | 0.140 | 10.200 | 11.616 | | 8 | 81/8 | 8.125 | 0.200 | 19.290 | 20.289 | | 10 | 101//8 | 10.125 | 0.250 | 30.100 | 31.590 | | 12 | 121//8 | 12.125 | 0.280 | 40.400 | 45.426 | | | | TYF | PE K | | | |-----------|-------------|--------|----------------|--------------------|-----------------------------| | Tube Size | O.D. Tubing | 0.D. | Wall Thickness | Weight
per Foot | Weight of
Water per Foot | | In. | In. | In. | In. | Lbs. | Lbs. | | 1/4 | 3/8 | 0.375 | 0.035 | 0.145 | 0.032 | | 3/8 | 1/2 | 0.500 | 0.049 | 0.269 | 0.055 | | 1/2 | 5/8 | 0.625 | 0.049 | 0.344 | 0.094 | | 5/8 | 3/4 | 0.750 | 0.049 | 0.418 | 0.144 | | 3/4 | 7/8 | 0.875 | 0.065 | 0.641 | 0.188 | | 1 | 11//8 | 1.125 | 0.065 | 0.839 | 0.337 | | 11/4 | 1% | 1.375 | 0.065 | 1.040 | 0.527 | | 1½ | 1% | 1.625 | 0.072 |
1.360 | 0.743 | | 2 | 21/8 | 2.125 | 0.083 | 2.060 | 1.310 | | 21/2 | 25/8 | 2.625 | 0.095 | 2.920 | 2.000 | | 3 | 31//8 | 3.125 | 0.109 | 4.000 | 2.960 | | 31/2 | 35/8 | 3.625 | 0.120 | 5.120 | 3.900 | | 4 | 41/8 | 4.125 | 0.134 | 6.510 | 5.060 | | 5 | 51//8 | 5.125 | 0.160 | 9.670 | 8.000 | | 6 | 61//8 | 6.125 | 0.192 | 13.870 | 11.200 | | 8 | 81/8 | 8.125 | 0.271 | 25.900 | 19.500 | | 10 | 101//8 | 10.125 | 0.338 | 40.300 | 30.423 | | 12 | 12½ | 12.125 | 0.405 | 57.800 | 43.675 | Gruvlok Table of Installation Contents Gruvlok Tech. Data Steel Flange Data Weld Fitting and Bolt Templates General Welding Information Conversions Drop Nipple and Tee-Let Installation Pipe Thread Standards # ASTM Carbon Steel Pipe and Flange Specifications | ASTM | CARB | IS NC | TEEL PII | PE AND | ASTM CARBON STEEL PIPE AND FLANGE SPECIFICATIONS | SPEC | IFIC | ATIO | NS | | | | |---|---------------------|-------|----------|-----------------|--|----------------------|-------------|------------|---------|----------------|-------------|-------------| | | Cnon | ASTM | Grade | Yield | Elong | Elongation (% in 2") | in 2") | | | Chemical | | | | Description and Applications | No. | ъ , | Strength | Strenath | STD | Rect | Rectangular | _ | | Composition, % | % | | | | | lype | <u>s</u> | PSI | Round | + | 2/16" | 91/s | ပ | W | _ | s | | | | | PIP | PIPE AND TUBING | BING | | | | | | | | | Seamless milled steel pipe for high-
temperature service, suitable for
bending, flanging & similar forming
operations. | (1)
A106 | A | 48,000 | 30,000 | 28 long.
0R (4)
20 trans. | 17.5+
or
12.5+ | 56t
40t | 35 | .25 max | .27 to.93 | .048
max | .058
max | | As above, except use Grade A for close coiling, cold bending or forge welding. | (1)
A106 | В | 000'09 | 35,000 | 28 long.
0R (4)
12 trans. | 17.5+
or
6.5+ | 56t
32t | 35
16.5 | .30 max | .27 to 1.06 | .048
max | .058
max | | Black or hot-dip galvanize seamless or res-welded steel pipe suitable for colling, bending, flanging, & other special purposes, suitable for welding. | A 53 | A | 48,000 | 30,000 | 28 | 17.5+ | 56t | 35 | (2) | 1 | (3) | ı | | As above, except use Grade A for close coiling, cold bending or forge welding. | A 53 | В | 000'09 | 35,000 | 22 | 15+ | 48t | 30 | (2) | I | (3) | 1 | | Black or hot-dip galvanize seamless or res. welded steel pipe suitable for ordinary uses. (When tension, flattening (obsolete) or bend test required, order to A-53). | A 120
(obsolete) | ı | I | I | I | 1 | I | I | 1 | I | ı | I | | Resistance welded steel pipe for liquid, gas or vapor. | A 135 | A | 48,000 | 30,000 | 1 | 17.5+ | 56t | 35 | ı | ı | .050
max | .060
max | | .060
max | | .05
max | .05
max | .05
max | | |--|----------------------|--|-------------|---|--| | .050
max | | .05
max | .05
max | .05
max | | | 9. E | | | | | | | 1 | | .90 тах | .90 max | .90 тах | | | 1 | | .35 (5) max | .35 (5) max | .35 (5) тах | | | | | .35 (| .35 (| .35 (| | | 30 | | 1 | 1 | I | | | 48t | | I | 1 | 1 | | | 15+ | | | | | | | ı | ANGES | 25 | 22 | 22 | | | 35,000 | FORGED PIPE, FLANGES | 30,000 | 36,000 | 30,000 | | | 000'09 | FORGE | 000'09 | 70,000 | 000'09 | | | В | | _ | = | _ | | | A 135 | | A105 | A 105 | A 181 | | | As above, except use Grade A for flanging & bending. | | Forged or rolled steel pipe flanges, fittings (6) values and parts for high temperature service. Heat treatment required; may be annealed or normalized. | As above | As above except for general service.
Heat treatment is not required. | | (1) 0.10% silicon minimum. (2) Open hearth, 0.13 max for 1/8" and 1/4" size resistance welded pipe only (3) Seamless: open hearth 0.048 max, acid bessemar 0.11 max; Res. welded: open hearth 0.050 max. (4) Longitudinal or transverse direction of test specimen with respect to pipe axis (5) When flanges will be subject to fusion welding, carbon content shall be <0.35%. If carbon is <0.35%, it may be necessary to add silicon to meet required tensile properties. (6) Factor-made Wrought Carbon Steel and Ferritic Alloy Steel Welding Fitting Specifications are covered under ASTM A234. The silicon content shall be ≤0.35%. | Gruvlok | Installation | |------------------|----------------------| | Gruvlok | Data Tech. Data Ins | | Pipe and | Flange Data | | Weld Fitting and | Steel Flange Data | | Bolt | Templates | | General Welding | Information | | Conversions | | | Drop Nipple and | Tee-Let Installation | | Pipe Thread | Standards | Table of Contents | P | IPE AND WAT | ER WEIGHT F | PER LINE FOO | т | |-----------|-------------|-------------|--------------|---------| | Nominal | Weig | ht of: | Weig | ht of: | | Pipe Size | Std. Pipe | Water | XS Pipe | Water | | In. | LL | bs. | LI | OS. | | 1/2 | 0.851 | 0.132 | 1.088 | 0.101 | | 3/4 | 1.131 | 0.230 | 1.474 | 0.188 | | 1 | 1.679 | 0.374 | 2.172 | 0.311 | | 11/4 | 2.273 | 0.648 | 2.997 | 0.555 | | 11/2 | 2.718 | 0.882 | 3.631 | 0.765 | | 2 | 3.653 | 1.455 | 5.022 | 1.280 | | 21/2 | 5.793 | 2.076 | 7.661 | 1.837 | | 3 | 7.580 | 3.200 | 10.250 | 2.864 | | 31/2 | 9.110 | 4.280 | 12.510 | 3.850 | | 4 | 10.790 | 5.510 | 14.980 | 4.980 | | 5 | 14.620 | 8.660 | 20.780 | 7.890 | | 6 | 18.970 | 12.510 | 28.570 | 11.290 | | 8 | 28.550 | 21.690 | 43.390 | 19.800 | | 10 | 40.480 | 34.100 | 54.740 | 32.300 | | 12 | 49.580 | 49.000 | 65.420 | 47.000 | | 14 | 54.570 | 59.700 | 72.090 | 57.500 | | 16 | 62.580 | 79.100 | 82.770 | 76.500 | | 18 | 70.590 | 101.200 | 93.450 | 98.400 | | 20 | 78.600 | 126.000 | 104.130 | 122.800 | | 24 | 94.620 | 183.800 | 125.490 | 180.100 | | 30 | 119.000 | 291.200 | 158.000 | 286.200 | | WEIGH | IT PER FC | OT OF SE | AMLESS | BRASS AN | ND COPPE | R PIPE | |-----------|-----------------|-----------|--------|-----------------|--------------|--------| | Nominal | | Regular | | | Extra Strong | | | Pipe Size | Yellow
Brass | Red Brass | Copper | Yellow
Brass | Red Brass | Copper | | In. | | Lbs. | | | Lbs. | | | 1/2 | 0.91 | 0.93 | 0.96 | 1.19 | 1.23 | 1.25 | | 3/4 | 1.23 | 1.27 | 1.30 | 1.62 | 1.67 | 1.71 | | 1 | 1.73 | 1.78 | 1.82 | 2.39 | 2.49 | 2.51 | | 11/4 | 2.56 | 2.63 | 2.69 | 3.29 | 3.39 | 3.46 | | 11/2 | 3.04 | 3.13 | 3.20 | 3.99 | 4.10 | 4.19 | | 2 | 4.01 | 4.12 | 4.22 | 5.51 | 5.67 | 5.80 | | | | WE | LD FITTINGS | | | | |-----------|-------------|--------------|-------------|---------------|--|--| | Nom. | 90° EL | BOWS | 45° ELBOWS | STRAIGHT TEES | | | | Pipe Size | Long R
A | Short R
A | В | C & M | | | | 1/2 | 1½ | _ | 5/8 | 1 | | | | 3/4 | 11//8 | _ | 7/16 | 11// | | | | 1 | 11/2 | 1 | 7/8 | 1½ | | | | 11/4 | 1% | 11/4 | 1 | 1% | | | | 11/2 | 21/4 | 11/2 | 11/8 | 21/4 | | | | 2 | 3 | 2 | 1% | 21/2 | | | | 21/2 | 33/4 | 21/2 | 1¾ | 3 | | | | 3 | 41/2 | 3 | 2 | 3% | | | | 31/2 | 51/4 | 31/2 | 21/4 | 3¾ | | | | 4 | 6 | 4 | 2 ½ | 41/8 | | | | 5 | 71/2 | 5 | 31//8 | 47/8 | | | | 6 | 9 | 6 | 3¾ | 5% | | | | 8 | 12 | 8 | 5 | 7 | | | | 10 | 15 | 10 | 61/4 | 81/2 | | | | 12 | 18 | 12 | 7½ | 10 | | | All dimensions shown are in inches. # **WELD FITTINGS** | CONCENTRIC REDUCERS | | | | | | | | | | |---------------------------------------|--------------|------|--|--|--|--|--|--|--| | Nom. Pi | pe Size | Н | | | | | | | | | 3/4 X 3/8, 1/2 | | 1½ | | | | | | | | | 1 x 3/8, 1/2 | , 3/4, | 2 | | | | | | | | | 11/4 x 1/2, 3/4 | , 1 | 2 | | | | | | | | | 1½ x ½, ¾ | , 1, 11/4 | 21/2 | | | | | | | | | 2 x ³ / ₄ , 1, | 11/4, 11/2 | 3 | | | | | | | | | 2½ x 1,1½ | i, 1½, 2 | 31/2 | | | | | | | | | 3 x 1 ¹ / ₄ , 1 | 1/2, 2, 21/2 | 3½ | | | | | | | | | (| CONCENTRIC REDU | CERS | |------|------------------------|------| | N | om. Pipe Size | Н | | 3½ x | 11/4, 11/2, 2, 21/2, 3 | 4 | | 4 x | 1½, 2, 2½, 3, 3½ | 4 | | 5 x | 2, 21/2, 3, 31/2, 4 | 5 | | 6 x | 2½, 3, 3½, 4, 5 | 5½ | | 8 x | 3½, 4, 5, 6 | 6 | | 10 x | 4, 5, 6, 8 | 7 | | 12 x | 5, 6, 8, 10 | 8 | All dimensions shown are in inches. Gruvlok Table of Installation Contents Gruvlok Conversions General Welding Drop Nipple and Pipe Thread Standards # Weld Fittings — Welding Neck Flanges Slip-on, Threaded and Socket Flanges | | WELDING NECK FLANGES | | | | | | | | | | | | | |--------------|----------------------|-------------------------|-------|-------------------------|-------|------------------|---------|------------------|--|--|--|--|--| | Nom.
Pipe | 150 | LB. | 300 | LB. | 400 | LB. | 600 LB. | | | | | | | | Size | 0 | Y ⁽¹⁾ | 0 | Y ⁽¹⁾ | 0 | Y ⁽²⁾ | 0 | Y ⁽²⁾ | | | | | | | 1/2 | 31/2 | 11//8 | 33/4 | 21/16 | 33/4 | 21/16 | 33/4 | 21/16 | | | | | | | 3/4 | 31//8 | 21/16 | 45//8 | 21/4 | 45/8 | 21/4 | 45//8 | 21/4 | | | | | | | 1 | 41/4 | 23/16 | 47/8 | 27/16 | 47//8 | 27/16 | 47/8 | 27/16 | | | | | | | 11/4 | 45/8 | 21/4 | 51/4 | 29/16 | 51/4 | 25/8 | 51/4 | 25/8 | | | | | | | 11/2 | 5 | 27/16 | 61//8 | 211/16 | 61//8 | 23/4 | 61//8 | 23/4 | | | | | | | 2 | 6 | 21/2 | 61/2 | 23/4 | 6½ | 27/8 | 61/2 | 27//8 | | | | | | | 21/2 | 7 | 23/4 | 71/2 | 3 | 71/2 | 31//8 | 71/2 | 31//8 | | | | | | | 3 | 71/2 | 23/4 | 81/4 | 31//8 | 81/4 | 31/4 | 81/4 | 31/4 | | | | | | | 31/2 | 81/2 | 213/16 | 9 | 33/16 | 9 | 3% | 9 | 3% | | | | | | | 4 | 9 | 3 | 10 | 3% | 10 | 31/2 | 10¾ | 4 | | | | | | | 5 | 10 | 3½ | 11 | 37/8 | 11 | 4 | 13 | 41/2 | | | | | | | 6 | 11 | 3½ | 12½ | 37/8 | 121/2 | 41/16 | 14 | 45/8 | | | | | | | 8 | 13½ | 4 | 15 | 43/8 | 15 | 45/8 | 16½ | 51/4 | | | | | | | 10 | 16 | 4 | 17½ | 45/8 | 171/2 | 47/8 | 20 | 6 | | | | | | | 12 | 19 | 41/2 | 20½ | 51//8 | 20½ | 53/8 | 22 |
61//8 | | | | | | ⁽¹⁾ The 1/16" raised face is included in length thru Hub, "Y". SLIP-ON, THREADED AND SOCKET FLANGES All dimensions shown are in inches. | Pipe | | | 333 25. | | | | | | |------|-------|---|---------|----------------------------------|-------|------------------|-------|--| | Size | 0 | Y (1) | 0 | Y (1) | 0 | Y ⁽²⁾ | 0 | Y ⁽²⁾ | | 1/2 | 31/2 | 5/8 | 33/4 | 7/8 | 33/4 | 7/8 | 33/4 | 7/8 | | 3/4 | 37//8 | 5/8 | 45/8 | 1 | 45//8 | 1 | 45//8 | 1 | | 1 | 41/4 | 11/16 | 47/8 | 11/16 | 47//8 | 11/16 | 47/8 | 11/16 | | 11/4 | 45//8 | 13/16 | 51/4 | 11/16 | 51/4 | 11//8 | 51/4 | 11//8 | | 1½ | 5 | 7/8 | 61//8 | 13/16 | 61//8 | 11/4 | 61//8 | 11/4 | | 2 | 6 | 1 | 61/2 | 15/16 | 6½ | 17/16 | 61/2 | 17/16 | | 21/2 | 7 | 11//8 | 71/2 | 11/2 | 71/2 | 1% | 71/2 | 1% | | 3 | 71/2 | 13/16 | 81/4 | 111/16 | 81/4 | 1 13/16 | 81/4 | 1 ¹³ / ₁₆ | | 31/2 | 81/2 | 1 ½† | 9 | 13/ ₄ † | 9 | 115/16 | 9 | 115/ ₁₆ † | | 4 | 9 | 1 5/ ₁₆ † | 10 | 17/8† | 10 | 2 | 10¾ | 21/8† | | 5 | 10 | 1 ⁷ / ₁₆ † | 11 | 2⁺ | 11 | 21/8 | 13 | 23/8*† | | 6 | 11 | 1 %16 [†] | 12½ | 2½16† | 121/2 | 21/4 | 14 | 25/8† | | 8 | 131/2 | 13/4† | 15 | 2 ⁷ / ₁₆ † | 15 | 211/16 | 161/2 | 3 [†] | ¹⁹ * Not available in Threaded type 10 16 115/16 171/2 25/8[†] 171/2 27/8 20 33/8† 2⁷/₈† 201/2 31/8 23/16[†] 201/2 22 35/8† ⁽²⁾ The 1/4" raised face is not included in length thru Hub, "Y". [†] Not available in Socket type ⁽¹⁾ The 1/16" raised face is included in length thru Hub, "Y". ⁽²⁾ The 1/4" raised face is not included in length thru Hub, "Y". All dimensions shown are in inches. # Lap Joint Flanges | | LAP JOINT FLANGES | | | | | | | | | | | | |--------------|-------------------|--|-------|--|-------|----------------|-------|---------------------------|--|--|--|--| | Nom.
Pipe | 150 | LB. | 300 | 300 LB. | | LB. | 600 | 600 LB. | | | | | | Size | 0 | Υ | 0 | Υ | 0 | Υ | 0 | Y | | | | | | 1/2 | 31/2 | 5/8 | 33/4 | 7/8 | 33/4 | 7/8 | 33/4 | 7/8 | | | | | | 3/4 | 37/8 | 5/8 | 45/8 | 1 | 45/8 | 1 | 45/8 | 1 | | | | | | 1 | 41/4 | 11/16 | 47/8 | 11/16 | 47/8 | 11/16 | 47/8 | 11/16 | | | | | | 11/4 | 45/8 | 13/16 | 51/4 | 1 ½16 | 51/4 | 11//8 | 51/4 | 11//8 | | | | | | 11/2 | 5 | 7/8 | 61//8 | 1 3/16 | 61//8 | 11/4 | 61//8 | 11/4 | | | | | | 2 | 6 | 1 | 61/2 | 1 ½16 | 6½ | 17/16 | 6½ | 17/16 | | | | | | 21/2 | 7 | 11//8 | 71/2 | 1½ | 71/2 | 1% | 71/2 | 15/8 | | | | | | 3 | 71/2 | 1 3/16 | 81/4 | 1 ¹¹ / ₁₆ | 81/4 | 1 13/16 | 81/4 | 1 13/16 | | | | | | 31/2 | 81/2 | 11/4 | 9 | 1¾ | 9 | 1 15/16 | 9 | 1 15/16 | | | | | | 4 | 9 | 1 5⁄16 | 10 | 111//8 | 10 | 2 | 10¾ | 21/8 | | | | | | 5 | 10 | 1 ⁷ / ₁₆ | 11 | 2 | 11 | 21//8 | 13 | 23/8 | | | | | | 6 | 11 | 1 %16 | 12½ | 21/16 | 12½ | 21/4 | 14 | 25/8 | | | | | | 8 | 13½ | 13/4 | 15 | 27/16 | 15 | 211/16 | 16½ | 3 | | | | | | 10 | 16 | 1 ¹⁵ / ₁₆ | 17½ | 3¾ | 17½ | 4 | 20 | 4 3// ₈ | | | | | | 12 | 19 | 23/16 | 20½ | 4 | 20½ | 41/4 | 22 | 45/8 | | | | | All dimensions shown are in inches. | | | | BLI | ND FLA | NGES | | | | |--------------|-------|------------------|-------|------------------|---|-------|-------|---------------------------------------| | Nom.
Pipe | 150 | LB. | 300 | LB. | 400 | LB. | 600 | LB. | | Size | 0 | Y ⁽¹⁾ | 0 | Y ⁽¹⁾ | 0 Y ⁽²⁾ | | 0 | Y ⁽²⁾ | | 1/2 | 31/2 | 7/16 | 33/4 | %16 | | | 33/4 | 9/16 | | 3/4 | 37//8 | 1/2 | 45/8 | 5/8 | | | 45/8 | 5/8 | | 1 | 41/4 | 9/16 | 47/8 | 11/16 | For S | Sizes | 47//8 | 11/16 | | 11/4 | 45/8 | 5/8 | 51/4 | 3/4 | | | 51/4 | 1 ³ ⁄ ₁₆ | | 11/2 | 5 | 11/16 | 61//8 | 13/16 | | | 61//8 | 7/8 | | 2 | 6 | 3/4 | 61/2 | 7/8 | 3½ and Smaller
use 600 LB.
Standard | | 6½ | 1 | | 21/2 | 7 | 7/8 | 71/2 | 1 | Stan | dard | 71/2 | 11//8 | | 3 | 71/2 | 1 ½16 | 81/4 | 11//8 | | | 81/4 | 11/4 | | 31/2 | 81/2 | 1 5⁄16 | 9 | 13/16 | | | 9 | 1% | | 4 | 9 | 1 ½16 | 10 | 11/4 | 10 | 1% | 10¾ | 11/2 | | 5 | 10 | 1 5⁄16 | 11 | 1% | 11 | 11/2 | 13 | 13/4 | | 6 | 11 | 1 | 12½ | 17/16 | 12½ | 15/8 | 14 | 17/8 | | 8 | 13½ | 11//8 | 15 | 1% | 15 | 17/8 | 16½ | 23/16 | | 10 | 16 | 1 3/16 | 17½ | 17/8 | 17½ | 21//8 | 20 | 21/2 | | 12 | 19 | 11/4 | 20½ | 2 | 201/2 | 21/4 | 22 | 25/8 | ⁽¹⁾ The $\frac{1}{16}$ " raised face is included in Thickness, "Y". Table of n Contents d Gruvlok Gruvlok ata Tech. Data Installation Weld Fitting and Pipe and Gru Steel Flange Data Flange Data Tech Templat ns General Welding Information Conversions Ge au Drop Nipple allu C Pipe Thread Drop N Standards Tee-Let ⁽²⁾ The ½" raised face **is not** included in Thickness, "Y". All dimensions shown are in inches. # STANDARD CAST IRON COMPANION FLANGES AND BOLTS (for working pressures up to 125 psi steam, 175 psi WOG) | Size | Flange Dia. | Bolt Circle | No. of Bolts | Bolt Size | Bolt Length | |------|-------------|-------------|--------------|-----------|-------------| | | - | | | | | | 3/4 | 31/2 | 21/2 | 4 | 3/8 | 2 | | 1 | 41/4 | 31/8 | 4 | 1/2 | 21/4 | | 11/4 | 45/8 | 31/2 | 4 | 1/2 | 21/4 | | 11/2 | 5 | 37/8 | 4 | 1/2 | 21/2 | | 2 | 6 | 43/4 | 4 | 5/8 | 23/4 | | 21/2 | 7 | 51/2 | 4 | 5/8 | 3 | | 3 | 71/2 | 6 | 4 | 5/8 | 3 | | 31/2 | 81/2 | 7 | 8 | 5/8 | 3 | | 4 | 9 | 71/2 | 8 | 5/8 | 3 | | 5 | 10 | 81/2 | 8 | 3/4 | 31/4 | | 6 | 11 | 91/2 | 8 | 3/4 | 31/4 | | 8 | 131/2 | 113/4 | 8 | 3/4 | 31/2 | | 10 | 16 | 141/4 | 12 | 7/8 | 4 | | 12 | 19 | 17 | 12 | 7/8 | 4 | | 14 | 21 | 183/4 | 12 | 1 | 41/2 | | 16 | 231/2 | 211/4 | 16 | 1 | 41/2 | All dimensions shown are in inches. | | EXTRA HEAVY CAST IRON COMPANION FLANGES AND BOLTS (for working pressures up to 250 psi steam, 400 psi WOG) | | | | | | | | | | |---------|--|-------------|--------------|-----------|-------------|--|--|--|--|--| | Size | Flange Dia. | Bolt Circle | No. of Bolts | Bolt Size | Bolt Length | | | | | | | 1 | 47/8 | 31/2 | 4 | 5/8 | 21/2 | | | | | | | 11/4 | 51/4 | 37/8 | 4 | 5/8 | 23/4 | | | | | | | 11/2 | 61/8 | 41/2 | 4 | 3/4 | 3 | | | | | | | 2 | 61/2 | 5 | 8 | 5/8 | 3 | | | | | | | 21/2 | 71/2 | 57/8 | 8 | 3/4 | 31/4 | | | | | | | 3 | 81/4 | 65/8 | 8 | 3/4 | 31/2 | | | | | | | 31/2 | 9 | 71/4 | 8 | 3/4 | 33/4 | | | | | | | 4 | 10 | 77/8 | 8 | 3/4 | 33/4 | | | | | | | 5 | 11 | 91/4 | 8 | 3/4 | 41/4 | | | | | | | 6 | 121/2 | 105/8 | 12 | 3/4 | 41/4 | | | | | | | 8 | 15 | 13 | 12 | 7/8 | 43/4 | | | | | | | 10 | 171/2 | 15¹/₄ | 16 | 1 | 51/2 | | | | | | | 12 | 201/2 | 173/4 | 16 | 11/8 | 53/4 | | | | | | | 14 O.D. | 23 | 201/4 | 20 | 11/8 | 61/2 | | | | | | | 16 O.D. | 251/2 | 221/2 | 20 | 11/4 | 61/2 | | | | | | | 18 O.D. | 28 | 243/4 | 24 | 11/4 | 63/4 | | | | | | | 20 O.D. | 301/2 | 27 | 24 | 11/4 | 71/8 | | | | | | | 24 O.D. | 36 | 32 | 24 | 11/2 | 8 | | | | | | All dimensions shown are in inches. | BOLT DIMENSIONS FOR 150 TO 300 LB. STEEL FLANGE 125/150 LB. Flange 250/300 LB. Flange | | | | | | | | | | | | |--|----------------------------|------------------|--------------------|--------------------------------|----------------|--------------------------------|------------------|--------------------|--------------------|----------------|--| | Nom. | | 125/150 | LB. FI | ange | | | 250/300 | LB. FI | ange | | | | Pipe
Size | Bolt
Circle
Diameter | Bolt
Diameter | No.
of
Bolts | * Stud
Length | Bolt
Length | Bolt
Circle
Diameter | Bolt
Diameter | No.
of
Bolts | * Stud
Length | Bolt
Length | | | 1/2 | 23/8 | 1/2 | 4 | 21/4 | 2 | 25/8 | 1/2 | 4 | 21/2 | 21/4 | | | 3/4 | 23/4 | 1/2 | 4 | 21/2 | 2 | 31/4 | 5/8 | 4 | 3 | 21/2 | | | 1 | 31/8 | 1/2 | 4 | 21/2 | 21/4 | 31/2 | 5/8 | 4 | 3 | 21/2 | | | 11/4 | 31/2 | 1/2 | 4 | 23/4 | 21/4 | 37/8 | 5/8 | 4 | 31/4 | 23/4 | | | 11/2 | 37/8 | 1/2 | 4 | 23/4 | 21/2 | 41/2 | 3/4 | 4 | 31/2 | 3 | | | 2 | 43/4 | 5/8 | 4 | 31/4 | 23/4 | 5 | 5/8 | 8 | 31/4 | 3 | | | 21/2 | 51/2 | 5/8 | 4 | 31/2 | 3 | 57/8 | 3/4 | 8 | 4 | 31/4 | | | 3 | 6 | 5/8 | 4 | 31/2 | 3 | 65/8 | 3/4 | 8 | 41/4 | 31/2 | | | 31/2 | 7 | 5/8 | 8 | 31/2 | 3 | 71/4 | 3/4 | 8 | 41/4 | 33/4 | | | 4 | 71/2 | 5/8 | 8 | 31/2 | 3 | 77/8 | 3/4 | 8 | 41/2 | 33/4 | | | 5 | 81/2 | 3/4 | 8 | 33/4 | 31/4 | 91/4 | 3/4 | 8 | 43/4 | 41/4 | | | 6 | 91/2 | 3/4 | 8 | 4 | 31/4 | 105/8 | 3/4 | 12 | 43/4 | 41/4 | | | 8 | 113/4 | 3/4 | 8 | 43/4 | 31/2 | 13 | 7/8 | 12 | 51/2 | 43/4 | | | 10 | 141/4 | 7/8 | 12 | 41/2 | 4 | 15 ¹ / ₄ | 1 | 16 | 61/4 | 51/2 | | | 12 | 17 | 7/8 | 12 | 43/4 | 4 | 173/4 | 11//8 | 16 | 63/4 | 53/4 | | | 14 | 183/4 | 1 | 12 | 51/4 | 41/2 | 201/4 | 1 ½ | 20 | 7 | 61/4 | | | 16 | 211/4 | 1 | 16 | 51/4 | 41/2 | 221/2 | 11/4 | 20 | 71/2 | 61/2 | | | 18 | 223/4 | 11//8 | 16 | 53/4 | 5 | 243/4 | 11/4 | 24 | 73/4 | 63/4 | | | 20 | 25 | 11//8 | 20 | 61/4 | 51/2 | 27 | 11/4 | 24 | 8 | 71/4 | | | 22 | 271/4 | 11/4 | 20 | 7 | 51/2 | 291/4 | 11/2 | 24 | 91/4 | 71/2 | | | 24 | 291/2 | 11/4 | 20 | 63/4 | 6 | 32 | 11/2 | 24 | 9 | 8 | | | 26 | 313/4 | 11/4 | 24 | 83/4 | 6 | 341/2 | 15/8 | 28 | 101/2 | 83/4 | | | 30 | 36 | 11/4 | 28 | 91/4 | 61/4 | 391/4 | 13/4 | 28 | 11 ⁷ /8 | 10 | | | 34 | 401/2 | 11/2 | 32 | 10 ¹ / ₂ | 7 | 431/2 | 17/8 | 28 | 13 | 103/4 | | | 36 | 423/4 | 11/2 | 32 | 11 | 7 | 46 | 2 | 32 | 131/2 | 111/4 | | | 42 | 491/2 | 11/2 | 36 | 1111/2 | 71/4 | 471/2 | 15/8 | 36 | 131/2 | 131/2 | | 71/4 "1/16" Raised Face Stud lengths for lap joint flanges are equal to lengths shown plus the thickness of two laps of the stub ends. lable of Installation aluviok d UVIOK Tech. Data Flange Data ribe alla weld Filting and Steel Flange Data Information | | BOLT DIMENSIONS FOR 400 AND 600 LB. STEEL FLANGE | | | | | | | | | | | | | |
----------------------|--|------------------|--------------------|------------------|----------------------------|------------------|--------------------|------------------|--|--|--|--|--|--| | Now | | 400 LB. | Flange | | | 600 LB. | Flange | | | | | | | | | Nom.
Pipe
Size | Bolt
Circle
Diameter | Bolt
Diameter | Number
of Bolts | * Stud
Length | Bolt
Circle
Diameter | Bolt
Diameter | Number
of Bolts | * Stud
Length | | | | | | | | 1/2 | 25/8 | 1/2 | 4 | 3 | 25/8 | 1/2 | 4 | 3 | | | | | | | | 3/4 | 31/4 | 5/8 | 4 | 31/2 | 31/4 | 5/8 | 4 | 3½ | | | | | | | | 1 | 31/2 | 5/8 | 4 | 31/2 | 31/2 | 5/8 | 4 | 3½ | | | | | | | | 11/4 | 37//8 | 5/8 | 4 | 3¾ | 37//8 | 5/8 | 4 | 33/4 | | | | | | | | 11/2 | 41/2 | 3/4 | 4 | 41/4 | 41/2 | 3/4 | 4 | 41/4 | | | | | | | | 2 | 5 | 5/8 | 8 | 41/4 | 5 | 5/8 | 8 | 41/4 | | | | | | | | 21/2 | 57/8 | 3/4 | 8 | 43/4 | 57/8 | 3/4 | 8 | 43/4 | | | | | | | | 3 | 65/8 | 3/4 | 8 | 5 | 65//8 | 3/4 | 8 | 5 | | | | | | | | 31/2 | 71/4 | 7/8 | 8 | 5½ | 71/4 | 7/8 | 8 | 5½ | | | | | | | | 4 | 77/8 | 7/8 | 8 | 5½ | 81/2 | 7/8 | 8 | 5¾ | | | | | | | | 5 | 91/4 | 7/8 | 8 | 5¾ | 10½ | 1 | 8 | 6½ | | | | | | | | 6 | 10% | 7/8 | 12 | 6 | 11½ | 1 | 12 | 6¾ | | | | | | | | 8 | 13 | 1 | 12 | 63/4 | 13¾ | 11//8 | 12 | 7¾ | | | | | | | | 10 | 151/4 | 11//8 | 16 | 71/2 | 17 | 11/4 | 16 | 81/2 | | | | | | | | 12 | 17¾ | 11/4 | 16 | 8 | 191/4 | 11/4 | 20 | 8¾ | | | | | | | | 14 | 201/4 | 11/4 | 20 | 81/4 | 20¾ | 13/8 | 20 | 91/4 | | | | | | | | 16 | 221/2 | 13/8 | 20 | 83/4 | 23¾ | 11/2 | 20 | 10 | | | | | | | | 18 | 24¾ | 13/8 | 24 | 9 | 25¾ | 15/8 | 20 | 10¾ | | | | | | | | 20 | 27 | 11/2 | 24 | 93/4 | 28½ | 15/8 | 24 | 11½ | | | | | | | | 22 | 291/4 | 15/8 | 24 | 10 | 30% | 13/4 | 24 | 12 | | | | | | | | 24 | 32 | 13/4 | 24 | 11 | 33 | 11% | 24 | 131/4 | | | | | | | | 26 | 34½ | 1¾ | 28 | 11½ | 36 | 1% | 28 | 131/4 | | | | | | | | 30 | 391/4 | 2 | 28 | 13 | 401/4 | 2 | 28 | 14 | | | | | | | | 34 | 43½ | 2 | 28 | 13¾ | 44½ | 21/4 | 28 | 15 | | | | | | | | 36 | 46 | 2 | 32 | 14 | 47 | 21/2 | 28 | 15¾ | | | | | | | | 42 | 481/4 | 17//8 | 32 | 15¼ | 50½ | 21/2 | 28 | 191/4 | | | | | | | ^{*1/4&}quot; Raised Face Stud lengths for lap joint flanges are equal to lengths shown minus $\frac{1}{2}$ " plus the thickness of two laps of the stub ends. | | BOLT | TEMPLA | ΓE FOR | DRIL | LING F | LANG | ED FIT | TINGS | | |--------------|--------------------------------|--|-----------------------------------|--------------------|----------------------|-----------------------|-------------------------------|---------------------------------------|--------------------------------| | Pipe
Size | Flange
Dia. | Min.
Flange
Thickness | Bolt
Circle
Dia. | No.
of
Bolts | Bolt
Hole
Dia. | Dia.
of
Bolt | Length of Bolt | Ring
Gasket
I.D. | Ring
Gasket
O.D. | | NPS/DN | In./mm | In./mm | In./mm | | In./mm | In./mm | In./mm | In./mm | In./mm | | 3/4 | 37/8 | 7/16 | 23/4 | 4 | 5/8 | 1/2 | 13/4 | 11/16 | 21/4 | | 20 | 98 | 11 | 70 | 4 | 16 | 13 | 44 | 27 | 57 | | 1 | 41/4 | 7/16 | 31/8 | 4 | 5/8 | 1/2 | 13/4 | 1 ⁵ / ₁₆ | 25/8 | | 25 | 108 | 11 | 79 | - | 16 | 13 | 44 | 33 | 67 | | 11/4 | 45/8 | 1/2 | 31/2 | 4 | 5/8 | 1/2 | 2 | 121/32 | 3 | | 32 | 117 | 13 | 89 | 7 | 16 | 13 | 51 | 42 | 76 | | 11/2 | 5 | 9/16 | 37/8 | 4 | 5/8 | 1/2 | 2 | 129/32 | 33/8 | | 40 | 127 | 14 | 98 | 7 | 16 | 13 | 51 | 48 | 86 | | 2 | 6 | 5/8 | 43/4 | 4 | 3/4 | 5/8 | 21/4 | 23/8 | 41/8 | | 50 | 152 | 16 | 121 | | 19 | 16 | 57 | 60 | 105 | | 21/2 | 7 | 11/16 | 51/2 | 4 | 3/4 | 5/8 | 21/2 | 27/8 | 47/8 | | 65 | 178 | 17 | 140 | · | 19 | 16 | 64 | 73 | 124 | | 3 | 71/2 | 3/4 | 6 | 4 | 3/4 | 5/8 | 21/2 | 31/2 | 53/8 | | 80 | 191 | 19 | 152 | | 19 | 16 | 64 | 89 | 137 | | 31/2 | 81/2 | 13/16 | 7 | 8 | 3/4 | 5/8 | 23/4 | 4 | 63/8 | | 90 | 216 | 22 | 178 | | 19 | 16 | 70 | 102 | 162 | | 4 | 9 | 15/16 | 71/2 | 8 | 3/4 | 5/8 | 3 | 41/2 | 67/8 | | 100 | 229 | 24 | 191 | | 19 | 16 | 76 | 114 | 175 | | 5 | 10 | 15/16 | 81/2 | 8 | 7/8 | 3/4 | 3 | 59/16 | 73/4 | | 125
6 | 254
11 | 24 | 216 | | 22
7/8 | 19
3/ ₄ | 76 | 141
6 ⁵ /8 | 197 | | 150 | 279 | 25 | 9 ¹ / ₂ 241 | 8 | '/8
22 | 19 | 3 ¹ / ₄ | 6%
168 | 8 ³ / ₄ | | 8 | 131/2 | 1 ¹ / ₈ | 113/4 | | 7/8 | 3/4 | 31/2 | 85/8 | 11 | | 200 | 343 | 178
29 | 298 | 8 | 22 | 19 | 372
89 | 0 78
219 | 279 | | 10 | 16 | 1 ³ / ₁₆ | 141/4 | | 1 | 7/8 | 33/4 | 103/4 | 133/8 | | 250 | 406 | 30 | 362 | 12 | 25 | 22 | 95 | 273 | 340 | | 12 | 19 | 11/4 | 17 | | 1 | 7/8 | 33/4 | 123/4 | 16 ¹ / ₈ | | 300 | 483 | 32 | 432 | 12 | 25 | 22 | 95 | 324 | 410 | | 14 O.D. | 21 | 13/8 | 183/4 | | 11/8 | 1 | 41/4 | 14 | 173/4 | | 350 O.D. | 533 | 35 | 476 | 12 | 29 | 25 | 108 | 356 | 451 | | 16 O.D. | 231/2 | 17/16 | 211/4 | | 11/8 | 1 | 41/2 | 16 | 201/4 | | 400 O.D. | 597 | 37 | 540 | 16 | 29 | 25 | 114 | 406 | 514 | | 18 O.D. | 25 | 19/16 | 223/4 | | 11/4 | 11/8 | 43/4 | 18 | 215/8 | | 450 O.D. | 635 | 40 | 578 | 16 | 32 | 29 | 121 | 457 | 549 | | 20 O.D. | 27 ¹ / ₂ | 1 ¹¹ / ₁₆ | 25 | -00 | 11/4 | 11/8 | 5 | 20 | 237/8 | | 500 O.D. | 699 | 43 | 635 | 20 | 32 | 29 | 127 | 508 | 606 | | 24 O.D. | 32 | 17/8 | 291/2 | 00 | 13/8 | 11/4 | 51/2 | 24 | 281/4 | | 600 O.D. | 813 | 48 | 749 | 20 | 35 | 32 | 140 | 610 | 718 | Drilling templates are in multiples of four, so that fittings may be made to face in any quarter. Bolt holes straddle the center line. Table of Contents Gruvlok Gruvlok Tech. Data Installation Weld Fitting and Pipe and Gruvlok Steel Flange Data Flange Data Tech. Data #### **BOLT TEMPLATE FOR DRILLING EXTRA HEAVY FLANGED FITTINGS** Min. Dia. of Bolt No. Dia. of Rina Pipe Flange Bolt Bolt Gasket Raised Flange Circle οf Bolt Gasket Size Dia. Dia. Lenath I.D. **Bolts** Holes 0.D. Thickness Face Dia. NPS/DN In./mm In./mm In./mm In./mm In./mm In./mm In./mm In./mm 1 $4^{7}/_{8}$ 11/16 211/16 31/2 3/4 5/8 21/2 15/16 27/8 4 25 124 68 89 19 16 64 33 51 11/4 51/4 3/4 31/16 37/8 3/4 5/8 21/2 121/32 31/4 4 32 19 78 98 19 16 64 42 83 11/2 $6^{1/8}$ 13/16 39/16 41/2 7/8 3/4 23/4 129/32 $3^{3}/_{4}$ 4 40 156 90 114 19 70 48 95 2 7/8 5 5/8 23/4 23/8 $4^{3}/_{8}$ 61/2 43/16 3/4 8 50 165 22 106 19 16 70 60 21/2 71/2 1 415/16 $5^{7}/8$ 7/8 3/1 31/4 27/8 $5^{1/8}$ 8 65 191 25 125 149 22 19 83 73 130 3 81/4 11/8 511/16 65/8 7/8 3/4 $3^{1/2}$ $3^{1}/_{2}$ $5^{7}/8$ 8 80 29 144 168 19 89 89 149 3/4 4 31/2 9 13/16 65/16 71/4 7/8 31/2 $6^{1/2}$ 8 90 229 30 160 184 19 89 102 4 10 11/4 615/16 $7^{7}/8$ 7/8 3/4 $3^{3}/_{4}$ 41/2 $7^{1}/_{8}$ 8 100 254 32 176 200 19 95 114 181 5 11 13/8 85/16 91/4 7/8 3/4 4 $5^{9}/_{16}$ 81/2 8 279 35 22 19 141 216 12¹/₂ 1⁷/₁₆ 911/16 7/8 3/4 6 10⁵/8 4 $6^{5/8}$ $9^{7}/_{8}$ 12 150 318 37 246 270 22 19 102 168 251 8 15 15/8 11¹⁵/₁₆ 13 1 7/8 41/2 85/8 121/8 12 381 41 303 330 25 114 308 10 171/2 17/8 141/16 15¹/₄ 11/8 1 $5^{1}/_{4}$ 103/4 141/4 16 250 445 48 357 387 29 25 133 362 201/2 2 16⁷/16 $17^{3}/_{4}$ 11/4 11/8 $5^{1/2}$ 123/4 12 16⁵/8 16 Drilling templates are in multiples of four, so that fittings may be made to face in any quarter. Bolt holes straddle the center line. 32 29 140 324 422 451 300 521 51 418 #### A. W. S. Classification - E6010 Direct Current, Reverse polarity, All Positions. All purpose. Moderately smooth finish. Good penetration. This is the electrode used for most carbon steel pipe welding. - E6011 Alternating Current, All Positions. All purpose. Moderately smooth finish. Good penetration. AC or DC or DC Reverse Polarity - E6012 Direct Current, Straight Polarity, All Positions. High bead. Smooth. Fast. "Cold rod". - E6013 Alternating Current, All Positions. High bead. Smooth. Fast. "Cold rod". AC, DC Reverse, DC Straight - E60**18 Direct Current, All Positions.** "Low hydrogen" iron powder electrodes. AC or DC Reverse Polarity - E6020 Direct Current, Straight Polarity, Flat & Horizontal Fillet. Flat bead. Smooth. Fast. Deep penetration. Can be used with A.C. also. "Hot rod". - E6027 "Iron powder electrodes". Flat and Horizontal Fillet, AC or DC Straight NOTE: This information also applies to E70, E80, E90, and E100 Series. The last two numbers (in **bold type**) designate the types or styles and the first two numbers the minimum specified tensile strength in 1,000 psi of the weld deposit as welded. # Physical Properties of E60 & E70 Series Electrodes # TYPICAL VALUES | AWS ASTM | Tensile | Yield | | Red. in Area | |-----------|---------------|---------------|------------|--------------| | Electrode | Strength | Strength | Elongation | Min. % | | E6010 | 62,000-70,000 | 52,000-58,000 | 22 to 28% | 35 | | E6011 | 62,000-73,000 | 52,000-61,000 | | | | E6012 | 68,000-78,000 | 55,000-65,000 | 17 to 22% | 25 | # MINIMUM VALUES | AWS ASTM | Tensile | Yield | | |-----------|----------|----------|------------| | Electrode | Strength | Strength | Elongation | | E7010 | 70,000 | 57,000 | 22 | | E7011 | 70,000 | 57,000 | 22 | | E7015 | 70,000 | 57,000 | 22 | | E7016 | 70,000 | 57,000 | 22 | | E7020 | 70,000 | 52,000 | 25 | | | | | | #### WELDING AND BRAZING TEMPERATURES | Carbon Steel Welding | 2490-2730°F | |---|-------------| | Cast Iron Welding | | | Copper Welding and Brazing | 1980°F | | Brazing Copper-Silicon with Phosphor-Bronze | 1850-1900°F | | Brazing Naval Bronze with Manganese Bronze | 1600-1700°F | | Silver Solder | 1175-1600°F | | Low Temperature Brazing | 1175-1530°F | | Soft Solder | 200-730°F | | Wrought Iron | 2700-2750°F | lable of # Basic Arc & Gas Welding Symbols | | BASIC WELD SYMBOLS | | | | | | | | | |------|--------------------|-----------------|----------------------------------|----------------|---|-----------|---|--|--| | | | | | GROOVE OR BUTT | | | | | | | Back | Fillet | Plug or
Slot | Square V Bevel U J Flare V Bevel | | | | | | | | | | | | \vee | V | \bigvee | 7 | | | | SUPPLEMENTARY WELD SYMBOLS | | | | | | |
----------------------------|--------|---------------------|------------|---------------------------|----------------|---------------------------------------| | Backing | Spacer | Weld All-
Around | Field Weld | CON ⁻
Flush | TOUR
Convex | See AWS A2.4 for a detailed review of | | М | M | | <u> </u> | | | standard welding
symbols | # Basic Arc & Gas Welding Symbols Notes #### NOTES: - 1. In plan or elevation, near, far, and both sides, locations refer to nearest member parallel to plane of drawing and not to others farther behind. - 2. In section or end views only, when weld is not drawn, the side to which arrow points is considered near side - 3. Welds on both sides are of same size unless otherwise shown. - 4. Symbols govern to break in continuity of structure or to extent of hatching or dimension lines - 5. Tail of arrow used for specification reference. - 6. All welds are continuous and of user's standard propertions and all except V-grooved and bevel-grooved welds are closed unless otherwise shown. - 7. When welds are drawn in section or end views, obvious information is not given by symbol. - 8. In joints in which one member only is to be grooved, arrows point to that member. ## NOTES: - 1. Size, weld symbol, length of weld and spacing must read in that order from left to right along the reference line. Neither orientation of reference line nor location of the arrow alter this rule. - 2. The perpendicular leg of \backslash , \backslash , \backslash , \vee weld symbols must be at left. - 3. Arrow and other side welds are of the same size unless otherwise shown. Dimensions of fillet welds must be shown on both the arrow side and other side symbol. - 4. The point of the field weld symbol must point toward the tail. - 5. Symbols apply between abrupt changes in direction of welding unless governed by the "All Around" symbol or otherwise dimensioned. | DECIMAL EQUIVALENTS OF FRACTIONS | | | | | | | |----------------------------------|---------|---------|--|-------------------------------|---------|----------| | Incl | hes | Metric | | Inc | hes | Metric | | Fractional | Decimal | mm | | Fractional | Decimal | mm | | 1/64 | .0156 | 0.3969 | | 5/8 | .6250 | 15.8750 | | 1/32 | .0313 | 0.7938 | | 41/64 | .6406 | 16.2719 | | 3/64 | .0469 | 1.1906 | | 21/32 | .6563 | 16.6688 | | 1/16 | .0625 | 1.5875 | | ⁴³ / ₆₄ | .6719 | 17.0656 | | 5/64 | .0781 | 1.9844 | | 11/16 | .6875 | 17.4625 | | 3/32 | .0938 | 2.3813 | | ⁴⁵ / ₆₄ | .7031 | 17.8594 | | 7/64 | .1094 | 2.7781 | | 23/32 | .7188 | 18.2563 | | 1/8 | .1250 | 3.1750 | | ⁴⁷ / ₆₄ | .7344 | 18.6531 | | 9/64 | .1406 | 3.5719 | | 3/4 | .7500 | 19.0500 | | 5/32 | .1563 | 3.9688 | | 49/64 | .7656 | 19.4469 | | 11/64 | .1719 | 4.3656 | | 25/32 | .7813 | 19.8438 | | ³ / ₁₆ | .1875 | 4.7625 | | 51/64 | .7969 | 20.2406 | | 13/64 | .2031 | 5.1594 | | ¹³ / ₁₆ | .8125 | 20.6375 | | 7/32 | .2188 | 5.5563 | | 53/64 | .8281 | 21.0344 | | ¹⁵ / ₆₄ | .2344 | 5.9531 | | ²⁷ / ₃₂ | .8438 | 21.4313 | | 1/4 | .2500 | 6.3500 | | 55/64 | .8594 | 21.8281 | | 17/64 | .2656 | 6.7469 | | 7/8 | .8750 | 22.2250 | | 9/32 | .2813 | 7.1438 | | 57/64 | .8906 | 22.6219 | | ¹⁹ / ₆₄ | .2969 | 7.5406 | | 29/32 | .9063 | 23.0188 | | ⁵ / ₁₆ | .3125 | 7.9375 | | ⁵⁹ / ₆₄ | .9219 | 23.4156 | | ²¹ / ₆₄ | .3281 | 8.3344 | | ¹⁵ / ₁₆ | .9375 | 23.8125 | | 11/32 | .3438 | 8.7313 | | 61/64 | .9531 | 24.2094 | | ²³ / ₆₄ | .3594 | 9.1281 | | 31/32 | .9688 | 24.6063 | | 3/8 | .3750 | 9.5250 | | 63/64 | .9844 | 25.0031 | | ²⁵ / ₆₄ | .3906 | 9.9219 | | 1 | 1.000 | 25.4000 | | 13/32 | .4063 | 10.3188 | | 1 ¹ / ₄ | 1.250 | 31.7500 | | ²⁷ / ₆₄ | .4219 | 10.7156 | | 11/2 | 1.500 | 38.1000 | | ⁷ / ₁₆ | .4375 | 11.1125 | | 1 ³ / ₄ | 1.750 | 44.4500 | | ²⁹ / ₆₄ | .4531 | 11.5094 | | 2 | 2.000 | 50.8000 | | 15/32 | .4688 | 11.9063 | | 21/2 | 2.500 | 63.5000 | | 31/64 | .4844 | 12.3031 | | 3 | 3.000 | 76.2000 | | 1/2 | .5000 | 12.7000 | | 31/2 | 3.500 | 88.9000 | | 33/64 | .5156 | 13.0969 | | 4 | 4.000 | 101.6000 | | 17/32 | .5313 | 13.4938 | | 5 | 5.000 | 127.0000 | | ³⁵ / ₆₄ | .5469 | 13.8906 | | 6 | 6.000 | 152.4000 | | ⁹ / ₁₆ | .5625 | 14.2875 | | 8 | 8.000 | 203.2000 | | 37/64 | .5781 | 14.6844 | | 10 | 10.000 | 254.0000 | | 19/32 | .5938 | 15.0813 | | 12 | 12.000 | 304.8000 | | ³⁹ / ₆₄ | .6094 | 15.4781 | | | | | | MINUTES CONVERTED T | O | |---------------------|---| | DECIMALS OF A DEGRE | E | | DECIMALS | OF A DEGREE | |----------|-------------| | Minutes | Degree | | 1 | .0166 | | 2 | .0333 | | 3 | .0500 | | 4 | .0666 | | 5 | .0833 | | 6 | .1000 | | 7 | .1166 | | 8 | .1333 | | 9 | .1500 | | 10 | .1666 | | 11 | .1833 | | 12 | .2000 | | 13 | .2106 | | 14 | .2333 | | 15 | .2500 | | 16 | .2666 | | 17 | .2833 | | 18 | .3000 | | 19 | .3166 | | 20 | .3333 | | 21 | .3500 | | 22 | .3666 | | 23 | .3833 | | 24 | .4000 | | 25 | .4166 | | 26 | .4333 | | 27 | .4500 | | 28 | .4666 | | 29 | .4833 | | 30 | .5000 | | 31 | .5166 | | 32 | .5333 | | 33 | .5500 | | 34 | .5666 | | 35 | .5833 | | 36 | .6000 | | 37 | .6166 | | 38 | .6333 | | 39 | .6500 | | 40 | .6666 | | 41 | .6833 | | 42 | .7000 | | 43 | .7166 | | 44 | .7333 | | 45 | .7500 | | 46 | .7666 | | 47 | .7833 | | 48 | .8000 | | 49 | .8166 | | 50 | .8333 | | 51 | .8500 | | 52 | .8666 | | 53 | .8833 | | 54 | .9000 | | 55 | .9166 | | 56 | .9333 | | 57 | .9500 | | 58 | .9666 | | 59 | .9833 | | 60 | 1.0000 | | | | | STANDARD CONVERSIONS | | | | | |----------------------|------------------------|-------------|--|--| | To Change | То | Multiply By | | | | Inches | Feet | 0.0833 | | | | Inches | Millimeters | 25.4 | | | | Feet | Inches | 12 | | | | reet | Yards | 0.3333 | | | | Yards | Feet | 3 | | | | Square Inches | Square feet | 0.00694 | | | | Square feet | Square inches | 144 | | | | · | Square yards | 0.11111 | | | | Square yards | Square feet | 9 | | | | Cubic Inches | Cubic feet | 0.00058 | | | | Cubic feet | Cubic inches | 1728 | | | | | Cubic yards | 0.03703 | | | | Cubic yards | Cubic feet | 27 | | | | Cubic Inches | Gallons | 0.00433 | | | | Cubic feet | Gallons | 7.48 | | | | | Cubic inches | 231 | | | | Gallons | Cubic feet | 0.1337 | | | | | Pounds of water | 8.33 | | | | Pounds of water | Gallons | 0.12004 | | | | Ounces | Pounds | 0.0625 | | | | Pounds | Ounces | 16 | | | | | Pounds per square inch | 0.0361 | | | | Inches of water | Inches of mercury | 0.0735 | | | | | Ounces per square inch | 0.578 | | | | | Pounds per square foot | 5.2 | | | | Inches of | Inches of water | 13.6 | | | | mercury | Feet of water | 1.1333 | | | | Í | Pounds per square inch | 0.4914 | | | | Ounces per | Inches of mercury | 0.127 | | | | square inch | Inches of water | 1.733 | | | | | Inches of water | 27.72 | | | | Pounds per | Feet of water | 2.31 | | | | square inch | Inches of mercury | 2.04 | | | | | Atmospheres | 0.0681 | | | | _ | Pounds per square inch | 0.434 | | | | Feet of water | Pounds per square foot | 62.5 | | | | | Inches of mercury | 0.8824 | | | | | Pounds per square inch | 14.696 | | | | Atmospheres | Inches of mercury | 29.92 | | | | | Feet of water | 34 | | | | Long tons | Pounds | 2240 | | | | Short tons | Pounds | 2000 | | | | | Long tons | 0.89285 | | | Table of Contents Gruvlok Installation Gruvlok Tech. Data Pipe and Flange Data Weld Fitting and Steel Flange Data Bolt Templates | | UNIT CON | |----------------------------|-----------------------------| | F | LOW | | 1 anm | 0.134 cu. ft. per min | | 1 gpm = | 500 lb.per hr. x sp. gr. | | 500 lb. per hr. = | 1 gpm / sp. gr. | | 1 cu. ft. per min. (cfm) = | 448.8 gal. per hr. (gph) | | P | OWER | | | 0.293 watt | | 1 Btu per hr. = | 12.96 ft. lb. per min. | | | 0.00039 hp | | | 288,000 Btu per 24 hr. | | | 12,000 Btu per hr. | | | 200 Btu per min. | | 1 ton refrigeration = | 83.33 lb. ice melted per | | (U.S.) | 24hr. from and at 32° F | | | 2,000 lb. ice melted per | | | 24hr. from and at 32° F | | | 550 ft. lb. per sec. | | 1 hp = | 746 watt | | • | 2,545 Btu per hr. | | | 33,480 Btu per hr. | | 41.9.1 | 34.5 lb. water evap. per | | 1 boiler hp = | hr. from & at 212°F | | | 9.8 kw. | | 1 kw. = | 3,413 Btu per hr. | | 1 | MASS | | 1 lb (quoir) | 16 oz. (avoir.) | | 1 lb. (avoir.) = | 7,000 grain | | 1 ton (short) = | 2,000 lb. | | 1 ton (long) = | 2,240 lb. | | PR | ESSURE | | 1 lb por og in | 3.13 ft. water at 60°F | | 1 lb. per sq. in. = | 2.04 in. hg at 60°F | | 1 ft water et COOF | .433 lb. per sq. in. | | 1 ft. water at 60°F = | .884 in. hg at 60°F | | 1 in the at COOF | .49 lb. per sq. in. | | 1 in. Hg at 60°F = | 1.13 ft. water at 60°F | | 1 lb. per sq. in. = | lb. per sq. in gauge (psig) | | Absolute (psia) | +14.7 | | | | | /EF | ERSION | | | | | | |-----|--|--|--|--|--|--| | | TEMPERATURE | | | | | | | | °C = | (°F-32) x 5/9 | | | | | | | VOLU | ME | | | | | | | | 128 fl. oz. (U.S.) | | | | | | | I gal. (U.S.) = | 231 cu. in. | | | | | | | | .833 gal. (Brit.) | | | | | | | 1 cu. ft. = | 7.48 gal. (U.S.) | | | | | | | WEIGHT O | F WATER | | | | | | | 1 cu. ft. at 50°F. = | 62.41 lb. | | | | | | | 1 gal. at 50°F. = | 8.34 lb. | | | | | | | 1 cu. ft. of ice = | 57.2 lb. | | | | | | | 1 cu. ft. at 39.2°F. = | 62.43 lb. | | | | | | | Water is at its greatest density at 39.2°F | | | | | | | | WEIGHT O | FLIQUID | | | | | | | 1 gal. (U.S.) = | 8.34 lb. x sp. gr. | | | | | | | 1 cu. ft. = | 62.4 lb. x sp. gr. | | | | | | | 1 lb. = | .12 U.S. gal. / sp. gr. | | | | | | | | .016 cu. ft. / sp. gr. | | | | | | | WORK | | | | | | | | | 778 ft. lb. | | | | | | | | .293 watt hr. | | | | | | | 1 Btu (mean) = | ½ of heat
required to change
temp of 1 lb. water
from 32°F to 212°F | | | | | | | 1 hp-hr = | 2545 Btu (mean) | | | | | | | 1 11p-111 = | .746 kwhr | | | | | | | 1 Kwhr = | 3413 Btu (mean) | | | | | | | I LYANIII = | 1.34 hp-hr | | | | | MODEL 'F' # INSTALLATION AND ASSEMBLY # Merit® Eliminator Adjustable Drop Nipple - A) For use in wet and dry pipe automatic sprinkler systems
installed in accordance with all applicable standards or codes. - B) Prior to installing the sprinkler, count the number of fully developed male threads on the brand of sprinkler to be installed. If seven (7) perfect threads are counted, the sprinkler should thread into the 1/2" or 3/4" thread from three (3) to four (4) threads hand tight. If five (5) to six (6) threads are counted, the sprinkler should thread into the 1/2" or 3/4" thread from two (2) to three (3) threads hand tight. - C) The use of an anaerobic pipe thread sealant is preferred for thread make up when connecting to another pipe fitting or nipple. If attaching a sprinkler head, please refer to the manufacturer's installation instructions and apply pipe thread sealant only to male threads of the sprinkler. - D) If either of the above fails to allow the sprinkler to make-up to a minimum of five (5) to six (6) full MODEL 'F' INSTALLATION threads, do not overtighten the sprinkler. Instead back the sprinkler out of the fitting. Clean any debris and/or pipe sealant from both the male and female threads. Gauge both the male threads of the sprinkler and the female threads of the Adjustable Drop Nipple for compliance with ASME B1.20.1. Specification for Tapered Pipe Threads. The same procedure would apply if a leak has been detected. If within tolerance, reapply the anaerobic pipe sealant and assemble to the required length. Allow twenty-four hours for setting. CEILING TILE SPRINKLER HEAD MIN MAX. LENGTH - E) Connect the Adjustable Drop Nipple assembly to the sprinkler system by wrenching on the make-up area on the Drop Nipple. DO NOT WRENCH ON THE BARREL PORTION OF THE UNIT OR SPRINKLER. Damage to the Adjustable Drop Nipple or Sprinkler may result. - F) After the ceiling has been installed adjust the sprinkler to its final position by using the sprinkler wrench and assemble the escutcheon plate to the inner support ring. It is recommended that the system pressure be relieved when adjusting, however it is not necessary to drain the system. Adjustable Drop Nipples described herein must be installed and maintained in compliance with this document as well as the applicable standards of the National Fire Protection Association in addition to the standards for any other authorities having jurisdiction. DO NOT USE ANY PETROLEUM BASED LUBRICANTS ON THE O-RING SEALS. Petroleum based lubricants are incompatible with EPDM and will impair serviceability of the unit. #### INSTALLATION AND ASSEMBLY Merit® Weld-Miser™ Tee-Let (Welding Outlet Fittings) | TEE-LET WELDED OUTLET FITTING (UL VIZU — EX6032, FM APPROVAL GUIDE CHAPTER 1 – PIPE FITTINGS) | | | | | | | | |---|---------------------------|----------------------------|-----------------------|--|--|--|--| | Outlet Model | Outlet Pipe Size (Inch) | Header Pipe Size (Inch) | Rated Pressure (psig) | | | | | | | 1/2, 3/4, 1 | ½ - 8 (Sch.10, 40) | | | | | | | Tee-Let Type A | 11/4, 11/2, 2, 21/2, 3, 4 | 1/2 - 4 (Sch. 5, DynaFlow) | 300 | | | | | | (F-Threaded End) | 2 | 4 (EZ-Flow) | 300 | | | | | | | 2, 4 | 6 (EZ-Flow) | | | | | | | Tee-Let Type C | 11/4 - 8 | 11/4 - 8 (Sch.10, 40) | 200 | | | | | | (Grooved End) | 2½ - 8 | 1/2 - 4 (Sch. 5, DynaFlow) | 300 | | | | | | Tee-Let Type C/R | 11/4 - 6 | 1½ - 8 (All Schedules) | 300 | | | | | | (Roll Grooved End) | 1/4 - 0 | 1/4 - 0 (All Scriedules) | 300 | | | | | ¹⁾ Size-on-size (i.e. 2 X 2) Tee-Lets are not FM Approved. **Note:** Tee-Lets are manufactured to fit size-on-size, that is the contoured shape on a given Tee-Let is made to fit perfectly on the first listed header size. If installed on the second header size marked on the fitting, a slight gap of approximately $\frac{1}{2}$ will appear along the longitudinal centerline of the header. For example, a 1" × 2 - $\frac{2}{2}$ " Tee-Let, is a 1" outlet fitting manufactured to fit perfectly on the 2" header size listed, while leaving a $\frac{1}{2}$ " gap along the longitudinal centerline of the $\frac{2}{2}$ " size. If a perfect fit is required for a $\frac{2}{2}$ " header pipe, then a 1" × $\frac{2}{2}$ " Tee-Let would be ordered. Size consolidations are employed to reduce inventory and provide for greater flexibility. ## Thread Make-up and Installation - A) For use in systems installed in accordance with all applicable standards or codes. (See Section III, Item C) - B) Prior to installing sprinkler, ensure that no dirt, weld spatter or damage is in the threads. Then count the number of fully developed male threads on the nipple or sprinkler to be installed into the fittings. Compare number of threads counted to the number of required fully developed threads as shown in the thread chart located on the back of this sheet. If thread count is correct, proceed with installation (Step C), if thread count does not match, check nipple or sprinkler for proper thread gage measurement and discard if not to ASME B1.20.1 - C) The use of an anaerobic pipe thread sealant is preferred for thread make up when connecting to another pipe fitting or nipple. If attaching a sprinkler head, please refer to the manufacturer's installation instructions and apply pipe thread sealant only to male threads of the sprinkler. - D) If either of the above fails to allow the sprinkler or nipple to assemble to a minimum of full threads, do not over tighten. Instead back the sprinkler or nipple out of the fitting. Clean any debris and/or pipe sealant from both the male and female threads. Gauge both the male threads of the sprinkler or nipple and the female threads of the Tee-Let for compliance with ASME Bl.20.1. Specification for Tapered Pipe Threads. The same procedure would apply if a leak has been detected. - If within tolerance, reapply the anaerobic pipe sealant or Teflon™ tape and make-on to the required length. Allow twenty-four hours for setting. ²⁾ FM rated working pressure when welded on Sch. 5 or non-threadable lightwall pipe is 175 psi. #### **Recommended Hole Sizes** The hole cut in the branch or header pipe can be cut prior or subsequent to attachment of the Tee-Let. One advantage of cutting the hole after welding is that the pipe is left intact during welding thereby reducing shrinkage and possible distortion. If holes are cut prior to welding, as some codes require, then the following hole sizes are recommended. Note that the same hole diameter for a given outlet size is required for both Type A and Type C Tee- Lets 1-11/2" larger. Holes may be cut by mechanical means: including hole sawing, mechanical flame cutting (oxyacetylene or propane) and air plasma cutting (constricted tungsten arc) machines. Merit offers a simple approach to cutting the hole. Hand-held templates are sized to match your plasma cutter. | RECOMN | MENDED TEE- | LET HOLE SIZES | | | |----------------------------------|-------------|-------------------------------------|--|--| | Tee-Let Size | Туре | Type Recommended Hole Size | | | | In./mm | | In./mm | | | | 1/2 (13) | Type A | 5/8 (16) | | | | ³ / ₄ (19) | Type A | ⁷ /8 (22) | | | | 1 (25) | Type A | 11/8 (28) | | | | 11/ 4 (31) | Type A | 1½ (38) | | | | 11/4 (31) | Type C | 13/8 (35) | | | | 11/2 (38) | Type A or C | 1 % (41) | | | | 2 (50) | Type A or C | 2 (50) | | | | 2 ½ (63) | Type A or C | 2 ⁷ / ₁₆ (61) | | | | 3 (75) | Type A or C | 3 (75) | | | | 4 (100) | Type A or C | 4 (100) | | | COMMENDED TEL LET HOLE CITEC #### **Recommended Welding Procedures** As a general rule, the weld should be only as hot as required to allow the weld to penetrate the materials being welded while concomitantly allowing gases developed in the welding process to escape. Every effort must be made to avoid welding too hot or overheating both the pipe and the Tee-Let. Excessive heat may cause the wrench tight threads (those in the bottom of the Tee-Let near the weld zone) to distort while also causing the branch pipe to bend. It should be noted that Merit Tee-Lets have been subjected to exhaustive testing and evaluation, and only negligibly distort when subjected to excessive heat. The threads, on the other hand, may not return to their gauged form after cooling if excessive heat causes them to expand. The following is intended only as a guide, and assumes that the welding equipment is properly calibrated and functioning normally and the operator is qualified. | RECOMME | NDED AMOUN | T OF WELD | |------------------|----------------------------------|----------------------------------| | Outlet Size | Α | В | | In./mm | In./mm | In./mm | | 1/2 (13) | 1/4 (7) | ³ / ₁₆ (5) | | 3/ 4 (19) | 1/4 (7) | ³ / ₁₆ (5) | | 1 (25) | 1/4 (7) | ³ / ₁₆ (5) | | 11/4 (31) | 1/4 (7) | ³ / ₁₆ (5) | | 1½ (38) | ⁵ / ₁₆ (8) | 1/4 (7) | | 2 (50) | ⁵ / ₁₆ (8) | 1/4 (7) | | 2½ (63) | ⁵ / ₁₆ (8) | 1/4 (7) | | 3 (75) | 3/8 (10) | ⁵ / ₁₆ (5) | | 4 (100) | 3/8 (10) | ⁵ / ₁₆ (5) | 11/4 - 21/2 Outlet Table of Contents Gruvlok #### INSTALLATION AND ASSEMBLY Merit® Weld-Miser™ Tee-Let (Welding Outlet Fittings) | RECOMMENDED SETTINGS FOR MICROWIRE WELDING PROCESS | | | | | | | | | |--|-------------------------|--------------------------------|-------------------|--------------------|------------|-----------|-----------------|--| | Header
Size | Pipe Wall
Thickness | Tee-Let
Types A, B, C | Electrode
Size | Welding
Current | Arc. Volts | Wire Feed | Travel
Speed | | | In./mm | In./mm | In./mm | | AMPS-DC | POS. | IPM | IPM | | | 1½ - 2
31-50 | 0.065 2 | ½ - 2
13-50 | 0.035 | 100-130 | 16-20 | 210 | 25-30 | | | | | 2½ - 4
63-100 | 0.035 | 115-150 | 17-21 | 270 | 20-25 | | | | 0.109
3 | ½ - 2
13-50 | 0.035 | 110-140 | 18-22 | 220 | 25-30 | | | | | 2½ - 4
63-100 | 0.035 | 120-160 | 19-22 | 290 | 20-25 | | | 2½ - 4 63-100 | 0.083
2.5 | ½ - 2
13-50 | 0.035 | 110-140 | 17-20 | 210 | 20-25 | | | | | 2½ -
4
<i>63-100</i> | 0.035 | 120-150 | 17-20 | 270 | 20-25 | | | | 0.120 3 | ½ - 2
13-50 | 0.035 | 120-160 | 19-22 | 290 | 20-25 | | | | | 2½ - 4
<i>63-100</i> | 0.035 | 130-160 | 19-22 | 240 | 20-25 | | | 5-6 125-150 | 0.109
3 | ½ - 2
13-50 | 0.035 | 120-150 | 17-20 | 210 | 20-25 | | | | | 2½ - 4
63-100 | 0.035 | 130-150 | 18-20 | 270 | 15-20 | | | | 0.134 <i>3.5</i> | ½ - 2
13-50 | 0.035 | 130-160 | 19-22 | 290 | 20-25 | | | | | 2½ - 4
63-100 | 0.035 | 140-160 | 20-22 | 270 | 15-20 | | | | | 2½ - 4
63-100 | 0.045 | 180-205 | 20-24 | 245 | 27-32 | | | 8 200 | 0.109 3 | ½ - 2
13-50 | 0.035 | 120-150 | 17-20 | 240 | 20-25 | | | | | 2½ - 4
<i>63-100</i> | 0.035 | 130-150 | 18-20 | 260 | 15-20 | | | | | 2½ - 4
63-100 | 0.045 | 170-220 | 18-22 | 290 | 12-18 | | | | 0.148
3.5 | ½ - 2
13-50 | 0.035 | 130-160 | 19-22 | 240 | 20-25 | | | | | 2½ - 4
63-100 | 0.035 | 140-160 | 20-22 | 260 | 15-20 | | | | | 2½ - 4
63-100 | 0.045 | 180-225 | 20-24 | 290 | 12-18 | | #### Shielding Gas Flow (for all sizes) 20-25 CFH - 1.) Co2 Deeper penetration, faster welding, low cost. - 2.) 25% Argon, 75% Co₂, Recommended for .134 wall and lighter, high welding speeds without melt through, minimum distortion and spatter, good penetration. Merit assumes no liability for any consequential damages resulting from the improper use of its Tee-Let Welding Outlet Fittings, nor for any recommendations made with respect to installation procedures. Gruvlok # INSTALLATION AND ASSEMBLY # General Assembly of Threaded Fittings - 1) Inspect both male and female components prior to assembly. - Threads should be free from mechanical damage, dirt, chips and excess cutting oil. - Clean or replace components as necessary. ### 2) Application of pipe dope - Use a pipe dope that is fast drying, sets-up to a semi hard condition and is vibration resistant. Alternately, an anaerobic sealant may be utilized. - Thoroughly mix the thread sealant prior to application. - Apply a thick even coat to the male threads only. Best application is achieved with a brush stiff enough to force sealant down to the root of the threads. ### 3) Joint Makeup - For sizes up to and including 2" pipe, wrench tight makeup is considered three full turns past handtight. Handtight engagement for 1/2" through 2" thread varies from 41/2 turns to 5 turns. - For 2¹/₂" through 4" sizes, wrench tight makeup is considered two full turns past handtight. Handtight engagement for 21/2" through 4" thread varies from 51/2 turns to 63/4 turns. | PIPE NIPPLE THREAD ENGAGEMENT
(Normal for Tight Joints) | | | | | | | | | | |--|-------------------------------|--|--|--|--|--|--|--|--| | Pipe Size | Length | | | | | | | | | | 1/8 | 1/4 | | | | | | | | | | 1/4 | 3/8 | | | | | | | | | | 3/8 | 3/8 | | | | | | | | | | 1/2 | 1/2 | | | | | | | | | | 3/4 | 9/16 | | | | | | | | | | 1 | 11/16 | | | | | | | | | | 11/4 | 11/16 | | | | | | | | | | 11/2 | 11/16 | | | | | | | | | | 2 | 3/4 | | | | | | | | | | 21/2 | ¹⁵ / ₁₆ | | | | | | | | | | 3 | 1 | | | | | | | | | | 31/2 | 11/16 | | | | | | | | | | 4 | 11/8 | | | | | | | | | | 5 | 11/4 | | | | | | | | | | 6 | 15/16 | | | | | | | | | # National Pipe Thread Standards | OARDS | Effective Thread External for Internal Thread Overall Length | Pitch Length Pitch External Thread Diameter | E | .3800 .1111 .3566 .3924 | .5025 .1667 .4670 .5946 | 9009. 6109. 7991. 6006 | .07918 .2143 .7450 .7815 | 1.0018 .2143 .9543 .7935 | 1.2563 .2609 1.1973 .9845 | 1.6013 .2609 1.5408 1.0085 | |--------------------------------|--|---|--|-------------------------|-------------------------|------------------------|--------------------------|--------------------------|---------------------------|----------------------------| | NATIONAL PIPE THREAD STANDARDS | | Pitch
Diameter Length | E ₁ L ₂ [†] | .3748** .2639 | .4899** .4018 | .6270 .4078 | .5337 | .9889 | 1.2386 .6828 | 1.5834 .7068 | | ONAL PIPE | Handtight Engagement | Length | L1# | .180** | .200** | .240 | .320 | .339 | .400 | .420 | | NATI | Pitch Diameter | ar beginning or
External Threads | E ₀ | .3635 | .4774 | .6120 | .7584 | 2296. | 1.2136 | 1.5571 | | | Pitch of | Thread | Ь | .0370 | .0556 | .0556 | .0714 | .0714 | 0870 | 0870 | | | Threads
per Inch | | Z | 27 | 8 | 8 | 4 | 14 | 111/2 | 111/2 | | | Outside | of Pipe | D | .405 | .540 | 9229 | .840 | 1.050 | 1.315 | 1.660 | | | Nominal | Pipe
Size | | 1/8 | 1/4 | 3/8 | 1/2 | 3/4 | - | 11/4 | | | | | | | | | | | | | | | | | | s
Table of
Contents | |--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|--| | 1.0252 | 1.0582 | 1.5712 | 1.6337 | 1.6837 | 1.7337 | 1.8400 | 1.9462 | 2.1462 | 2.3587 | 2.5587 | 2.6837 | 2.8837 | 3.0837 | 3.2837 | 3.6837 | uge gage. Pipe Thread are Line pipe thread Gruvlok Installation | | 1.7798 | 2.2527 | 2.7039 | 3.3250 | 3.8219 | 4.3188 | 5.3751 | 6.4305 | 8.4180 | 10.5297 | 12.5172 | 13.7594 | 15.7469 | 17.7344 | 19.7219 | 23.6969 | small end of plug
standard Line Pir
55, Ladish Co. Lii
65, Ladish Co. Lii
67uvlok
Fech. Data | | .2609 | .2609 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | .2500 | ### ASME B1.20.1 National Pipe Thread Taper and the API Standard Line Pipe Thread are interchangeable. Reprinted by permission from Catalog No. 55, Ladish Co. Line pipe threads begin with a recess. Both Weld Fitting and Pipe and Gruvlok Gruvlok Templates Steel Flange Data Flange Data Tech. Data Installation C | | 1.8413 | 2.3163 | 2.7906 | 3.4156 | 3.9156 | 4.4156 | 5.4786 | 6.5406 | 8.5406 | 10.6656 | 12.6656 | 13.9156 | 15.9156 | 17.9156 | 19.9156 | 23.9156 | length from gape Thread Tape permission from from from from from from from from | | .7235 | .7565 | 1.1375 | 1.2000 | 1.2500 | 1.3000 | 1.4063 | 1.5125 | 1.7125 | 1.9250 | 2.1250 | 2.2500 | 2.4500 | 2.6500 | 2.8500 | 3.2500 | ring gage and length from the state of s | | 1.8223 | 2.2963 | 2.7622 | 3.3885 | 3.8888 | 4.3871 | 5.4493 | 0905.9 | 8.5000 | 10.6209 | 12.6178 | 13.8726 | 15.8758 | 17.8750 | 19.8703 | 23.8609 | THAlso length of rin The ASME B1.20.1 Interchangeable. Re Degin with a recess Bolt Templates | | .420 | .436 | .682 | 992. | .821 | .844 | .937 | .958 | 1.063 | 1.210 | 1.360 | 1.562 | 1.812 | 2.000 | 2.125 | 2.375 | eldir | | 1.7961 | 2.2690 | 2.7195 | 3.3406 | 3.8375 | 4.3344 | 5.3907 | 6.4461 | 8.4336 | 10.5453 | 12.5328 | 13.7750 | 15.7625 | 17.7500 | 19.7375 | 23.7125 | Pipe Thre | | 0870 | 0870 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | .1250 | Data per ASME B1.20.1 - 1983 (R2006) (for Taper Standard 5-B (for Line Pipe Threads). **Not according to ASME B1.20.1 - 1983 (R2006) *Also length of plug gage. Pipe Thread Drop Nipple and Convastandards Standards Tee-Let Installation | | 111/2 | 111/2 | 80 | 80 | 80 | 00 | 8 | 80 | 8 | 80 | 80 | 80 | 80 | 80 | 80 | 8 | Data per ASME B1.20.1 - 1983 (R2006) Standard 5-B (for Line Pipe Threads). **Not according to ASME B1.20.1 - 1983 **Also length of plug gage. Pipe Thread Drop Nipple and Standards Tee-Let Installation | | 1.900 | 2.375 | 2.875 | 3.500 | 4.000 | 4.500 | 5.563 | 6.625 | 8.625 | 10.750 | 12.750 | 14.000 | 16.000 | 18.000 | 20.000 | 24.000 | Data per ASME B1.20.1 Standard 5-B (for Line P Not according to ASME Falso length of plug gage. Pipe Thread Standards Tee | | 11/2 | 2 | 21/2 | က | 31/2 | 4 | 2 | 9 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 | Data per.
Standard
**Not acc
#Also len | # Forged Steel Anvilets ### **INSTALLATION NOTE**
Anvil Anvilets are designed to have no more than a $1/\kappa$ gap (1.6mm) between the base or skirt of the Anvilet when it is seated directly upon the appropriate run pipe. However, it is recommended that the skirt of Anvilets be held slightly above the run pipe and tack welded to provide a small continuous root gap between the skirt and run pipe before completing the all-around welding beads or fillet. ### PRESSURE TEMPERATURE RATINGS MSS Standard Practice SP-97 gives the following correlation between fitting pressure class and pipe schedule number/wall thickness designation for the calculation of pressure-temperature ratings: | FORGED STEEL ANVILETS PRESSURE TEMPERATURE RATINGS | | | | | | | | | | | | |--|----------------|------------|-----------|------------------|--|--|--|--|--|--|--| | Branch | Pressure Class | Branch Con | Pipe Wall | | | | | | | | | | Connection Type | of Fitting | NPS | DN | for Rating Basis | | | | | | | | | | STD | 1/8 - 24 | 6 - 600 | STD | | | | | | | | | Buttweld | XS/XH | 1/8 - 24 | 6 - 600 | XS/XH | | | | | | | | | | SCH 160 | 1/2- 6 | 15 - 150 | SCH 160 | | | | | | | | | Threaded | 3,000 | 1/4 - 4 | 8 - 100 | XS/XH | | | | | | | | | Inreaded | 6,000 | 1/2- 2 | 15 - 50 | SCH 160 | | | | | | | | | Socket-Welding | 3,000 | 1/2- 2 | 15 - 50 | XS/XH | | | | | | | | | Socket-welding | 6,000 | 1/2- 2 | 15 - 50 | SCH 160 | | | | | | | | The maximum allowable pressure of a fitting is computed in accordance with the applicable piping code or regulation for straight seamless header (run) pipe or for material of equivalent composition and mechanical properties to the fitting. Any corrosion or mechanical allowances and any reduction in allowable stress due to temperature or other service conditions, must be applied to the pipe and fitting alike. # Forged Steel Fittings In accordance with ASME B16.11 - "Forged Fittings, Socket-Welding and Threaded" this table shows the schedule of pipe corresponding to each class of fitting for rating purposes. | FORGED STEEL FITTINGS PRESSURE RATINGS | | | | | | | | | | | | |--|----------|------|--|--|--|--|--|--|--|--|--| | Class | Schedule | | | | | | | | | | | | Class | N.P.T. | S.W. | | | | | | | | | | | 2000 | 80 | _ | | | | | | | | | | | 3000 | 160 | 80 | | | | | | | | | | | 6000 | XXS/XXH | 160 | | | | | | | | | | ASME B16.11 states that the maximum allowable pressure of a fitting be computed in accordance with the applicable piping code or regulation for straight seamless pipe or for material of equivalent composition and mechanical properties to the fitting. Any corrosion or mechanical allowances and any reduction in allowable stress due to temperature or other service conditions must be applied to the pipe and fitting alike. | | OIL COUNTRY FITTINGS | | | | | | | | | | | | | | |-----------------|------------------------------|------|--------------------|-----------------|-----------|------|--------------------|--|--|--|--|--|--|--| | | CURRENT API THREAD STANDARDS | | | | | | | | | | | | | | | Nominal
Size | O.D. Size | Pipe | Tubing &
Casing | Nominal
Size | O.D. Size | Pipe | Tubing &
Casing | | | | | | | | | 3/4 | 1.050 | 14 | | | 5 | | 8 Rd. | | | | | | | | | ¾ EUE | 1.050 | _ | 10 Rd. | | 5½ | | 8 Rd. | | | | | | | | | 1 | 1.315 | 11½ | 10 Rd. | 5 | 5%16 | 8V | | | | | | | | | | 1 EUE | 1.315 | _ | 10 Rd. | | 6 | _ | 8 Rd. | | | | | | | | | 11/4 | 1.660 | 11½ | 10 Rd. | 6 | 65/8 | 8V | 8 Rd. | | | | | | | | | 11/4 EUE | 1.660 | _ | 10 Rd. | _ | 7 | _ | 8 Rd. | | | | | | | | | 1½ | 1.900 | 11½ | 10 Rd. | _ | 75/8 | _ | 8 Rd. | | | | | | | | | 1½ EUE | 1.900 | _ | 10 Rd. | 8 | 85/8 | 8V | 8 Rd. | | | | | | | | | 2 | 23/8 | 11½ | 10 Rd. | _ | 95/8 | _ | 8 Rd. | | | | | | | | | 2 EUE | 23/8 | _ | 8 Rd. | 10 | 10¾ | 8V | 8 Rd. | | | | | | | | | 21/2 | 27//8 | 8V | 10 Rd. | _ | 113/4 | | 8 Rd. | | | | | | | | | 2½ EUE | 27//8 | _ | 8 Rd. | 12 | 123/4 | 8V | | | | | | | | | | 3 | 31/2 | 8V | 10 Rd. | _ | 13% | _ | 8 Rd. | | | | | | | | | 3 EUE | 3½ | | 8 Rd. | _ | 14 | 8V | _ | | | | | | | | | 31/2 | 4 | 8V | 8 Rd. | _ | 16 | 8V | 8 Rd. | | | | | | | | | 3½ EUE | 4 | 8V | 8 Rd. | _ | 18 | 8V | _ | | | | | | | | | 4 | 41/2 | 8V | 8 Rd. | _ | 20 | 8V | 8 Rd. | | | | | | | | | 4 EUE | 41/2 | | 8 Rd. | | | | _ | | | | | | | | # Beam Dimensions | | S SH | APES | | |--------------------------|-----------------------|--|-------------------------------------| | Depth of
Section
Y | Weight
per Ft. | Flange
Width | Mean
Thickness
of Flange
Z | | ln. | Lbs. | ln. | ln. | | 3 | 5.7
7.5 | 2¾
2½ | 0.250 | | 4 | 7.7
9.5 | 25/8
23/4 | 0.313 | | 5 | 10.0
14.75 | 3
3½ | 0.313 | | 6 | 12.5
17.25 | 3 ³ / ₈
3 ⁵ / ₈ | 0.375 | | 7 | 15.3
20.0 | 35/8
37/8 | 0.375 | | 8 | 18.4 4
23.0 41/8 | | 0.438 | | 10 | 25.4 45%
35.0 5 | | 0.500 | | 12 | 31.8
35.0 | 5
5½ | 0.563 | | 12 | 40.8
50.0 | 5½
5½ | 0.688 | | 15 | 42.9
50.0 | 5½
5% | 0.625 | | 18 | 54.7
70.0 | 6
6½ | 0.688 | | 20 | 66.0
75.0 | 6½
6¾ | 0.813 | | 20.3 | 86.0
96.0 | 7
7½ | 0.938 | | 24 | 80.0
90.0
100.0 | 7
7½
7½ | 0.875 | 20.7 25.0 30.0 33.9 40.0 50.0 42.7 45.8 51.9 58.0 12 15 18 3 3 31/8 3% 31/2 33/4 4 4 41/8 41/4 0.500 0.625 0.625 | W SHAP | ES | |--|-------------| | Depth of Weight Flange Section Y Per Ft. Width Flange Z Depth of Section Y Weight Flange Z | th Flange Z | | In. Lbs. In. In. Lbs. In. | | | 5 19 5 0.430 30 6 ³ | | | 6 25 61/8 0.455 34 63/ | | | 18 51/4 0.330 38 63 | . | | 21 51/4 0.400 43 8 | 10.000 | | 24 6½ 0.400 48 8 | 10.000 | | 28 6½ 0.465 53 8 | 10.000 | | 8 31 8 0.435 61 10 | | | 35 8 0.495 14 68 10 | | | 40 81/8 0.560 74 101 | | | 48 81/8 0.685 82 101 | | | 58 81/4 0.810 90 141 | | | 67 81/4 0.935 | | | 22 53/4 0.360 109 145 | % 0.860 h | | 26 5¾ 0.440 120 14 | % 0.940 | | 30 5¾ 0.510 132 14 | 4 1.030 | | 33 8 0.435 36 7 | 0.430 | | 39 8 0.530 40 7 | 0.505 | | 10 45 8 0.620 45 7 | 0.565 | | 49 10 0.560 50 77 | 8 0.63 | | 54 10 0.615 16 57 77 | 8 0.715 | | 60 101/8 0.680 67 101 | 4 0.665 | | 68 101/8 0.770 77 101 | 4 0.760 | | 77 101/4 0.870 89 103 | % 0.875 | | 88 101/4 0.990 100 103 | % 0.985 | | 26 6½ 0.380 50 7½ 0.440 | 2 0.570 | | 35 6½ 0.520 55 7½ | 2 0.630 | | 40 8 0.515 60 77 | 2 0.695 | | 45 8 0.575 65 75 | 6 0.750 | | 50 8½ 0.640 18 71 75 | 6 0.810 | | 52 10 0.575 76 11 | 0.680 | | 12 58 10 0.575 86 111 | /8 0.770 | | 65 12 0.605 97 111 | /8 0.870 | | 72 12 0.603 | 4 0.940 | | 79 121/8 0.735 | | | Depth
of
Section
Y | Weight
per Ft. | Mean
Thick.
of
Flange
Z | | | | | | |-----------------------------|-------------------|-------------------------------------|-------|--|--|--|--| | In. | Lbs. | In. | In. | | | | | | | 62 | 81/4 | 0.615 | | | | | | | 68 | 81/4 | 0.685 | | | | | | | 73 | 81/4 | 0.740 | | | | | | 21 | 83 | 83/8 | 0.835 | | | | | | 21 | 93 | 83/8 | 0.930 | | | | | | | 101 | 121/4 | 0.800 | | | | | | | 111 | 12% | 0.875 | | | | | | | 122 | 123/8 | 0.960 | | | | | | | 76 | 9 | 0.680 | | | | | | | 84 | 9 | 0.770 | | | | | | 24 | 94 | 91/8 | 0.875 | | | | | | 24 | 104 | 123/4 | 0.750 | | | | | | | 117 | 12¾ | 0.850 | | | | | | | 131 | 121//8 | 0.960 | | | | | | | 94 | 10 | 0.745 | | | | | | 27 | 102 | 10 | 0.830 | | | | | | 21 | 114 | 101//8 | 0.930 | | | | | | | 146 | 14 | 0.975 | | | | | | | 108 | 10½ | 0.760 | | | | | | 30 | 116 | 10½ | 0.850 | | | | | | 30 | 124 | 10½ | 0.930 | | | | | | | 132 | 10½ | 1.000 | | | | | | | 118 | 11½ | 0.740 | | | | | | 33 | 130 | 11½ | 0.855 | | | | | | | 141 | 11½ | 0.960 | | | | | | | 135 | 12 | 0.790 | | | | | | 36 | 150 | 12 | 0.940 | | | | | | | 160 | 12 | 1.020 | | | | | 121/8 0.810 121/4 0.990 87 96 121/8 0.900 106 # A Typical Pipe Hanger Specification | | TABLE 1: Maximum Horizontal Spacing Between Pipe Supports for Standard Weight Steel Pipe* |---------------------------------|---|------------------------|---|----|----|------|----|----|----------|----|----|----|----|----|----|----|----|----|----|----| | | | Nominal Pipe Size (in) | 1/2 | 3/4 | 1 | 1½ | 2 | 21/2 | 3 | 3½ | 4 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 | 30 | | Max. Span (Ft)
Water Service | 7 | 7 | 7 | 9 | 10 | 11 | 12 | 13 | 14 | 16 | 17 | 19 | 22 | 23 | 25 | 27 | 28 | 30 | 32 | 33 | | Max. Span (Ft)
Vapor Service | 8 | 9 | 9 | 12 | 13 | 14 | 15 | 16 | 17 | 19 | 21 | 24 | 26 | 30 | 32 | 35 | 37 | 39 | 42 | 34 | | Recommended
Hanger Rod Sizes | 3/6 1/2 5/8 3/4 7/8 1 1 11/4 11/2 or trape | | | | | | | | <u> </u> | | | | | | | | | | | | The above spacing and capacities are based on pipe filled with water. Additional valves and fittings increase the load and therefore closer hanger spacing is required. *Many codes and specifications state "pipe hangers must be spaced every 10ft. regardless of size." This local specification must be followed. | TABLE 2: Maxi | TABLE 2: Maximum Horizontal Spacing Between Copper Tubing Supports | | | | | | | | | | | | | |---------------------------------|--|--------------------------|---|------|------|----|------|----|------|----|--|--|--| | | | Nominal Tubing Size (in) | | | | | | | | | | | | | | 1/2 | 3/4 | 1 | 11/4 | 11/2 | 2 | 21/2 | 3 | 31/2 | 4 | | | | | Max. Span (Ft)
Water Service | 5 | 5 | 6 | 7 | 8 | 8 | 9 | 10 | 11 | 12 | | | | | Max. Span (Ft)
Vapor Service | 6 | 7 | 8 | 9 | 10 | 11 | 13 | 14 | 15 | 16 | | | | **NOTE:** Spans shown in Tables 1 and 2 do not apply where there are concentrated loads between supports or where temperatures exceed 750°F. | TAE | TABLE 3: Load Carrying Capacities of Threaded
Hanger Rods. | | | | | | | | | | |-----------|--|----------------|----------------------|---------------------|--|--|--|--|--|--| | Materials | Carbor | Steel with Mir | nimum Actual Tensile | Strength of 50 Ksi. | Rod
Diameter (in) | Threads per Inch | Root Area of
Coarse Thread (in²) | Maximum Safe Load (lbs)
Rod Temperature, 650° F | Maximum Safe Load (lbs)
Rod Temperature, 750° F | | | |----------------------|------------------|-------------------------------------|--|--|--|--| | 3/8 | 16 UNC | 0.0678 | 730 | 572 | | | | 1/2 | 13 UNC | 0.126 | 1,350 | 1,057 | | | | 5/8 | 11 UNC | 0.202 | 2,160 | 1,692 | | | | 3/4 | 10 UNC | 0.302 | 3,230 | 2,530 | | | | 7/8 | 9 UNC | 0.419 | 4,480 | 3,508 | | | | 1 | 8 UNC | 0.551 | 5,900 | 4,620 | | | | 11/4 | 7 UNC | 0.890 | 9,500 | 7,440 | | | | 11/2 | 6 UNC | 1.29 | 13,800 | 10,807 | | | | 13/4 | 5 UNC | 1.74 | 18,600 | 14,566 | | | | 2 | 41/2 UNC | 2.30 | 24,600 | 19,265 | | | | 21/4 | 41/2 UNC | 3.02 | 32,300 | 25,295 | | | | 21/2 | 4 UNC | 3.72 | 39,800 | 31,169 | | | | 23/4 | 4 UNC | 4.62 | 49,400 | 38,687 | | | | 3 | 4 UNC | 5.62 | 60,100 | 47,066 | | | | 31/4 | 4 UNC | 6.72 | 71,900 | 56,307 | | | | 31/2 | 4 UNC | 7.92 | 84,700 | 66,331 | | | | 33/4 | 4 UNC | 9.21 | 98,500 | 77,139 | | | | 4 | 4 UNC | 10.6 | 114,000 | 88,807 | | | | 41/4 | 4 UN | 12.1 | 129,000 | 101,337 | | | | 41/2 | 4 UN | 13.7 | 146,000 | 114,807 | | | | 43/4 | 4 UN | 15.4 | 165,000 | 128,982 | | | | 5 | 4 UN | 17.2 | 184,000 | 144,096 | | | Standard UNC thread thru 4" diameter and 4-UN-2A thread series for 41/4" diameter and larger. # Gruvlok® Pipe Support When designing the hangers, supports and anchors for a grooved-end pipe system, the piping designer must consider certain unique characteristics of the grooved type coupling in addition to many universal pipe hanger and support design factors. As with any pipe system, the hanger or support system must provide for - 1) the weight of the pipe, couplings, fluid & pipe system components; - 2) reduce stresses at pipe joints; and - 3) permit required pipe system movement to relieve stress. The following factors should be considered when designing hangers and supports for a grooved-end pipe system. ### **Pipe Hanger Spacing:** The following charts show the maximum span between pipe hangers for straight runs of standard weight steel pipe filled with water or other similar fluids. Do not use these values where critical span calculations are made or where there are concentrated loads between supports. For straight runs without concentrated loads and where full linear movement is **NOT** required use the table on right. HANGER SPACING LINEAR MOVEMENT NOT REQUIRED | Nominal Pipe
Size Range | Maximum Span
Between Supports | |----------------------------|----------------------------------| | In./DNmm | Feet/meters | | 1 | 7 | | 25 | 2.6 | | 11/4-2 | 10 | | 32-50 | 3.0 | | 21/2-4 | 12 | | 65-100 | 3.7 | | 5-8 | 14 | | 125-200 | 4.3 | | 10-12 | 16 | | 250-300 | 4.9 | | 14-16 | 18 | | 350-400 | 5.5 | | 18-24 | 20 | | 450-600 | 6.1 | For straight runs without concentrated loads and where full linear movement *IS* required use the table below. # HANGER SPACING - FLEXIBLE SYSTEM, STEEL PIPE FULL LINEAR MOVEMENT IS REQUIRED AVERAGE HANGERS PER PIPE LENGTH EVENLY SPACED | Nominal Pipe
Size Range | | Pipe Length in Feet/Meters | | | | | | | | | | |----------------------------|----------|----------------------------|-----------|-----------|-----------|------------------|---------------|-----------|------------|-------------------|--| | In.
DNmm | 7
2.1 | 10
3.3 | 12
3.7 | 15
4.6 | 20
6.1 | 22
6.7 | 25 7.6 | 30
9.1 | 35
10.7 | 40
12.2 | | | 1-2 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | | | 25-50 | | | | | | | | | | | | | 21/2-4 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | | | 65-100 | | | | | | | | | | | | | 5-24 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | | | 125-600 | | | | | | | | | | | | | | HANGER SPACING - RIGID SYSTEMS SUGGESTED MAXIMUM SPAN BETWEEN SUPPORTS | | | | | | | | | | |------------------|--|--------------|-----------|------------|-------------|------------------|---------|-----------|--|--| | | | | STEEL | PIPF | | | COPPE | R TUBE | | | | Nominal | Sugges | ted Maximi | | | ports-Feet | /Meters | Water | Gas & Air | | | | Size | V | later Servic | e | · | Air Service | | Service | Service | | | | In./DNmm | * | ** | *** | * | ** | ** | ** | | | | | 1 | 7 | 9 | 12 | 9 | 10 | 12 | _ | _ | | | | 25 | 2.1 | 2.7 | 3.7 | 2.7 | 3.0 | 3.7 | | | | | | 11/4 | 7 | 11 | 12 | 9 | 12 | 12 | _ | - | | | | 32 | 2.1 | 3.4 | 3.7 | 2.7 | 3.6 | 3.7 | | | | | | 1½ | 7 | 12 | 15 | 9 | 13 | 15 | _ | - | | | | <u>40</u>
2 | 2.1
10 | 3.7
13 | 4.6
15 | 2.7
13 | 4
15 | 4.6
15 | 9 | 12 | | | | 50 | 3 | 4 | 4.6 | 4 | 4.6 | 4.6 | 2.7 | 3.6 | | | | 21/2 | 11 | 15 | 15 | 14 | 17 | 15 | 9 | 12 | | | | 65 | 3.4 | 4.6 | 4.6 | 4.3 | 5.1 | 4.6 | 2.7 | 3.6 | | | | 3 O.D. | 11 | 15 | 15 | 14 | 17 | 15 | - | - | | | | 76.1 | 3.4 | 4.6 | 4.6 | 4.3 | 5.1 | 4.6 | | | | | | 3 | 12 | 16 | 15 | 15 | 19 | 15 | 10 | 14 | | | | 80 | 3.7 | 4.8 | 4.6 | 4.6 | 5.7 | 4.6 | 3 | 4.2 | | | | 3½
90 | 13
4 | 18
5.4 | 15
4.6 | 15
4.6 | 21
6.3 | 15
4.6 | - | _ | | | | 4 | 14 | 18 | 15 | 17 | 21 | 15 | 12 | 17 | | | | 100 | 4.3 | 5.4 | 4.6 | 5.2 | 6.4 | 4.6 | 3.7 | 5.1 | | | | 4½ 0.D. | 14 | 18 | 15 | 17 | 19 | 15 | - | - | | | | 108.0 | 4.3 | 5.4 | 4.6 | 5.2 | 5.7 | 4.6 | | | | | | 5 | 16 | 20 | 15 | 20 | 24 | 15 | 13 | 18 | | | | 125 | 4.9 | 6.0 | 4.6 | 6.1 | 7.3 | 4.6 | 4 | 5.7 | | | | 51/4 O.D. | 15 | 18 | 15 | 19 | 22 | 15 | - | - | | | | 133.0 | 4.6 | 5.5 | 4.6 | 5.2
20 | 6.6
24 | 4.6 | | _ | | | | 5½ O.D.
139.7 | 16
4.9 | 19
5.8 | 15
4.6 | 6.1 | 7.3 | <i>15</i>
4.6 | _ | _ | | | | 6 | 17 | 21 | 15 | 21 | 26 | 15 | 14 | 21 | | | | 150 | 5.2 | 6.3 | 4.6 | 6.4 | 7.8 | 4.6 | 4.2 | 6.3 | | | | 6½ 0.D. | 16 | 20 | 15 | 20 | 24 | 15 | - | - | | | | 159.0 | 4.9 | 6.0 | 4.6 | 6.1 | 7.3 | 4.6 | | | | | | 6½ O.D. | 17 | 21 | 15 | 21 | 25 | 15 | _ | - | | | | 165.1 | 5.2 | 6.3 | 4.6 | 6.4 | 7.6 | 4.6 | | | | | | 8
200 | 19
5.8 | 23
6.9 | 15
4.6 | 24
7.3 | 29
8.7 | 15
4.6 | - | - | | | | 10 | 5.8
19 | 25 | 15 | 24 | 33 | 15 | _ | _ | | | | 250 | 5.8 | 7.5 | 4.6 | 7.3 | 9.9 | 4.6 | _ | _ | | | | 12 | 23 | 26 | 15 | 30 | 36 | 15 | - | - | | | | 300 | 7 | 7.8 | 4.6 | 9.1 | 10.8 | 4.6 | | | | | | 14 | 23 | 26 | 15 | 30 | 37 | 15 | - | - | | | | 350 | 7 | 7.8 | 4.6 | 9.1 | 11.1 | 4.6 | | | | | | 16 | 27 | 26 | 15 | 35 | 40 | 15 | - | - | | | | 400 | 8.2 | 7.8 | 4.6 | 10.7 | 12.0 | 4.6 | _ | | | | | 18
450 | 27
8.2 | 27
8.1 | 15
4.6 | 35
10.7 | 42
12.6 | 15
4.6 | _ | _ | | | | 20 | 30 | 27 | 15 | 39 | 45 | 15 | _ | _ | | | | 500 | 9.1 | 8.1 | 4.6 | 11.9 | 13.5 | 4.6 | | | | | | 24 | 32 | 26 | 15 | 42 | 48 | 15 | - | - | | | | 600 | 9.8 | 7.8 | 4.6 | 12.8 | 14.7 | 4.6 | | | | | ^{*} Spacing by ANSI-B31.1 Power Piping Code. ^{**} Spacing by ANSI-B31.9 Building Service Piping Code, (1996 Edition), Fig. 921.1.3c, Table a, 250 psi and Fig. 921.1.3D, table a ^{***} Spacing by NFPA-13 Installation of Sprinkler Systems, (1999 Edition), Table 6-2.2. | | PVC PIPE SUPPORT SPACING | | | | | | | | | | | | | | | |-------|--------------------------|-------|-------|------|-------|------|-------|-------|--------|------|-------|------------------|------|------|------| | Pipe | | | EDUL | | | | | EDUL | | | | | DULE | | | | Size | | Temp | _ | | | | | | re (°F | | | Temperature (°F) | | | | | (in.) | 60 | 80 | 100 | 120 | 140 | 60 | 80 | 100 | 120 | 140 | 60 | 80 | 100 | 120 | 140 | | 1/4 | 4 | 3½ | 31/2 | 2 | 2 | 4 | 4 | 31/2 | 21/2 | 2 | - | - | - | - | - | | 3/8 | 4 | 4 | 31/2 | 21/2 | 2 | 41/2 | 41/2 | 4 | 21/2 | 21/2 | - | - | - | - | - | | 1/2 | 41/2 | 41/2 | 4 | 21/2 | 21/2 | 5 | 41/2 | 41/2 | 3 | 21/2 | 5 | 5 | 41/2 | 3 | 21/2 | | 3/4 | 5 | 41/2 | 4 | 21/2 | 2½ | 5½ | 5 | 41/2 | 3 | 21/2 | 5½ | 5 | 41/2 | 3 | 3 | | 1 | 5½ | 5 | 41/2 | 3 | 2½ | 6 | 5½ | 5 | 31/2 | 3 | 6 | 5½ | 5 | 3½ | 3 | | 11/4 | 51/2 | 5½ | 5 | 3 | 3 | 6 | 6 | 5½ | 31/2 | 3 | 61/2 | 6 | 5½ | 31/2 | 31/2 | | 11/2 | 6 | 5½ | 5 | 31/2 | 3 | 6½ | 6 | 5½ | 31/2 | 3½ | 61/2 | 6½ | 6 | 4 | 3½ | | 2 | 6 | 5½ | 5 | 31/2 | 3 | 7 | 6½ | 6 | 4 | 3½ | 71/2 | 7 | 6½ | 4 | 3½ | | 21/2 | 7 | 61/2 | 6 | 4 | 3½ | 71/2 | 71/2 | 61/2 | 41/2 | 4 | 8 | 71/2 | 7 | 41/2 | 4 | | 3 | 7 | 7 | 6 | 4 | 3½ | 8 | 71/2 | 7 | 41/2 | 4 | 81/2 | 8 | 71/2 | 5 | 41/2 | | 31/2 | 71/2 | 7 | 61/2 | 4 | 4 | 81/2 | 8 | 71/2 | 5 | 41/2 | 9 | 81/2 | 71/2 | 5 | 41/2 | | 4 | 71/2 | 7 | 61/2 | 41/2 | 4 | 9 | 81/2 | 71/2 | 5 | 41/2 | 91/2 | 9 | 81/2 | 5½ | 5 | | 5 | 8 | 71/2 | 7 | 41/2 | 4 | 91/2 | 9 | 8 | 51/2 | 5 | 101/2 | 10 | 9 | 6 | 5½ | | 6 | 81/2 | 8 | 71/2 | 5 | 41/2 | 10 | 9½ | 9 | 6 | 5 | 11½ | 10½ | 91/2 | 61/2 | 6 | | 8 | 9 | 81/2 | 8 | 5 | 41/2 | 11 | 101/2 | 91/2 | 61/2 | 5½ | - | _ | _ | _ | _ | | 10 | 10 | 9 | 81/2 | 5½ | 5 | 12 | 11 | 10 | 7 | 6 | - | _ | _ | _ | _ | | 12 | 111/2 | 101/2 | 91/2 | 61/2 | 5½ | 13 | 12 | 10½ | 71/2 | 6½ | _ | _ | _ | _ | _ | | 14 | 12 | 11 | 10 | 7 | 6 | 13½ | 13 | 11 | 8 | 7 | _ | _ | _ | _ | _ | | 16 | 121/2 | 111/2 | 10½ | 71/2 | 6½ | 14 | 13½ | 11½ | 81/2 | 71/2 | _ | _ | _ | _ | _ | | 18 | 13 | 12 | 11 | 8 | 7 | 14½ | 14 | 12 | 11 | 9 | _ | _ | _ | _ | _ | | 20 | 14 | 121/2 | 11½ | 10 | 81/2 | 15½ | 141/2 | 121/2 | 111/2 | 91/2 | _ | _ | _ | _ | _ | | 24 | 15 | 13 | 121/2 | 11 | 9½ | 17 | 15 | 14 | 121/2 | 10½ | _ | _ | _ | _ | _ | | | | S | DR 4 | 1 | - / - | | S | DR 2 | | ,,, | | | | | | | 18 | 13 | 12 | 11 | 8 | 7 | 14½ | 14 | 12 | 9 | 8 | | | | | | | 00 | 401/ | 101/ | 441/ | 01/ | 71/ | 4.5 | 4.417 | 401/ | 01/ |
01/ | | | | | | 20 | 13½ | 12½ | 11½ | 8½ | 7½ | 15 | 14½ | 12½ | 9½ | 8½ | 24 | 14 | 13 | 12 | 9 | 8 | 15½ | 15 | 13 | 10 | 9 | NOTE: Although support spacing is shown at 140°F consideration should be given to the u **NOTE:** Although support spacing is shown at 140°F, consideration should be given to the use of CPVC or continuous support above 120°F. The possibility of temperature overrides beyond regular working temperatures and cost may either make either of the alternatives more desirable. This chart based on continuous spans and for un-insulated line carrying fluids of specific gravity up to 1.00. The above table is meant as a general guideline, it is recommended that the pipe manufacturer be consulted for specific spacing recommendations relating to their pipe, load conditions, operating temperature and service conditions. Local codes and specifications may also vary from the above recommended spacing and should be consulted for the applicable spacing requirements prior to installation. # **CPVC Pipe Support Spacing** | | CPVC PIPE SUPPORT SPACING | | | | | | | | | | | | |--------------|---------------------------|------|------|------|------|---------------------------------|------|------|------|------|------|------| | Pipe
Size | Size Temperature (°F) | | | | | SCHEDULE 80
Temperature (°F) | | | | | | | | (in.) | 73° | 100° | 120° | 140° | 160° | 180° | 73° | 100° | 120° | 140° | 160° | 180° | | 1/2 | 5 | 41/2 | 41/2 | 4 | 21/2 | 21/2 | 51/2 | 5 | 41/2 | 41/2 | 3 | 21/2 | | 3/4 | 5 | 5 | 41/2 | 4 | 21/2 | 21/2 | 5½ | 5½ | 5 | 41/2 | 3 | 21/2 | | 1 | 51/2 | 51/2 | 5 | 41/2 | 3 | 21/2 | 6 | 6 | 5½ | 5 | 3½ | 3 | | 11/4 | 5½ | 5½ | 5½ | 5 | 3 | 3 | 61/2 | 6 | 6 | 51/2 | 31/2 | 3 | | 11/2 | 6 | 6 | 5½ | 5 | 31/2 | 3 | 7 | 61/2 | 6 | 51/2 | 31/2 | 31/2 | | 2 | 6 | 6 | 5½ | 5 | 31/2 | 3 | 7 | 7 | 6½ | 6 | 4 | 31/2 | | 21/2 | 7 | 7 | 61/2 | 6 | 4 | 31/2 | 8 | 71/2 | 71/2 | 61/2 | 41/2 | 4 | | 3 | 7 | 7 | 7 | 6 | 4 | 3½ | 8 | 8 | 71/2 | 7 | 41/2 | 4 | | 31/2 | 71/2 | 71/2 | 7 | 61/2 | 4 | 4 | 81/2 | 81/2 | 8 | 71/2 | 5 | 41/2 | | 4 | 71/2 | 71/2 | 7 | 61/2 | 41/2 | 4 | 81/2 | 9 | 81/2 | 71/2 | 5 | 41/2 | | 6 | 81/2 | 8 | 71/2 | 7 | 5 | 41/2 | 10 | 91/2 | 9 | 8 | 5½ | 5 | | 8 | 91/2 | 9 | 81/2 | 71/2 | 51/2 | 5 | 11 | 10½ | 10 | 9 | 6 | 51/2 | | 10 | 10½ | 10 | 91/2 | 8 | 6 | 5½ | 11½ | 11 | 10½ | 91/2 | 6½ | 6 | | 12 | 11½ | 10½ | 10 | 81/2 | 61/2 | 6 | 12½ | 12 | 11½ | 10½ | 71/2 | 61/2 | | 14 | 12 | 11 | 10 | 9 | 8 | 6 | 15 | 13½ | 12½ | 11 | 91/2 | 8 | | 16 | 13 | 12 | 11 | 91/2 | 81/2 | 7 | 16 | 15 | 13½ | 12 | 10 | 81/2 | **NOTE:** Although support spacing is shown at 140°F, consideration should be given to the use of CPVC or continuous support above 120°F. The possibility of temperature overrides beyond regular working temperatures and cost may either make either of the alternatives more desirable. This chart based on continuous spans and for un-insulated line carrying fluids of specific gravity up to 1.00. The above table is meant as a general guideline, it is recommended that the pipe manufacturer be consulted for specific spacing recommendations relating to their pipe, load conditions, operating temperature and service conditions. Local codes and specifications may also vary from the above recommended spacing and should be consulted for the applicable spacing requirements prior to installation. ### **COPPER TUBING HANGERS** Fig. CT-69 Adjustable Swivel Ring Size Range: 1/2" thru 4" Fig. CT-65 Light Duty Adjustable Clevis Size Range: 1/2" thru 4" Fig. CT-138R Extension Split Tubing Clamp Size Range: 1/2" thru 2" Fig. 69F Adjustable Swivel Ring Felt Lined Size Range: 1/2" thru 6" Fig. 67F Copper Tube Felt Lined Hanger Size Range: 1/2" thru 6" Fig. CT-255 Copper Tubing Alignment Guide Size Range: 1" thru 4" Fig. CT-121 Copper Tubing Riser Clamp Size Range: 1/2" thru 4" Fig. CT-128R Rod Threaded Ceiling Flange Size Range: 3/8" thru 1/2" # CPVC PIPE HANGERS Fig. 185 One Hole Pipe Strap Size Range: 3/4" thru 2" Fig. 186 Two Hole Pipe Strap Size Range: 3/4" thru 2" Fig. 187 Two Hole 90° Side Mount Strap Size Range: 3/4" thru 2" Fig. 188 Two Hole Stand Off Strap Size Range: 3/4" thru 2" # **PIPE RINGS** Fig. 108 Split Pipe Ring Size Range: 3/8" thru 8" Fig. 138R Extension Split Pipe Clamp Size Range: 3/8" thru 3" Fig. 104 Adjustable Swivel Ring, Split Ring Type Size Range: 3/4" thru 8" Fig. 69 Adjustable Swivel Ring Size Range: 1/2" thru 8" # **SOCKET CLAMPS** Fig. 595 & 594 Socket Clamp for Ductile Iron or Cast Iron Pipe & Socket Clamp Washer Size Range: 4" thru 24" pipe Fig. 600 & 599 Socket Clamp for Ductile Iron or Cast Iron Pipe & Socket Clamp Washer Size Range: 3" thru 24" pipe # **CLEVIS** Fia. 67 Pipe or Conduit Hanger Size Range: 1/2" thru 6" Fia. 65 Light Duty Adjustable Clevis Size Range: 3/8" thru 4" Fia. 260 Adjustable Clevis Hanger Size Range: 1/2" thru 30" Fia. 260 ISS Clevis Hanger with Insulation Saddle System Size Range: 2" thru 16" Fia. 300 Adjustable Clevis for Insulated Lines Size Range: 3/4" thru 12" Fia. 590 Adjustable Clevis for Ductile or Cast Iron Size Range: 3" thru 24" # STEEL PIPE CLAMPS Fig. 261 Extension Pipe or Riser Clamp Size Range: 3/4" thru 24" Fig. 40 Riser Clamp Standard Size Range: 2" thru 24" Offset Pipe Clamp Size Range: 3/4" thru 8" Fig. 100 Extended Pipe Clamp Size Range: 1/2" thru 8" Fig. 212 Medium Pipe Clamp Size Range: 1/2" thru 30" Fig. 212FP Earthquake Bracing Clamp Size Range: 21/2" thru 12" Fig. 216 Heavy Pipe Clamp Size Range: 3" thru 42" Fig. 295 Double Bolt Pipe Clamp Size Range: 3/4" thru 36' Fig. 295A Alloy Double Bolt Pipe Clamp Size Range: 11/2" thru 24' Fig. 295H Heavy Duty Double Bolt Pipe Clamp Size Range: 6" thru 36" Fig. 224 Alloy Steel Pipe Clamp Size Range: 4" thru 16' Fig. 246 Heavy Duty Alloy Steel Pipe Clamp Size Range: 10" thru 24" # **BRACKETS** Fig. 202 Iron Side Beam Bracket Size Range: 3/8" thru 5/8' Fig. 206 Steel Side Beam Bracket Size Range: 3/8" thru 5/8" Fig. 207 Threaded Steel Side Beam Bracket Size Range: 3/8" and 1/2" Fig. 189 Staight Eye Socket Size: 3/8" Fig. 190 Off-Set Eve Socket Size: 3/8" Light Welded Steel Bracket Medium Welded Steel Bracket Fig. 199 Heavy Welded Steel Bracket # **BEAM CLAMPS** Fia. 86 & 88 C-Clamp with Set Screw and Lock Nut Size Range: 3/8" thru 3/4" Fia. 95 C-Clamp with Locknut Size Range: 3/8" and 1/2" Fia. 89 Retaining Clip Size Range: 3/8" thru 1/2' Fig. 89X Retaining Clip Size Range: 3/8" thru 3/4" Fia. 92 Universal C-Type Clamp Standard Throat Size Range: 3/8" and 1/2" Fig. 93 Universal C-Type Clamp Wide Throat Size Range: 3/8" and 1/2" Fig. 94 Wide Throat Top Beam C-Clamp Size Range: 5/8" and 3/4" Fig. 227 Top Beam Clamp Fig. 14 Adjustable Side Beam Clamp Size Range: 3/8" thru 5/8" Fig. 217 Adjustable Side Beam Clamp Size Range: 3" thru 75/8" Fia. 133 Standard Duty Beam Clamp Size Range: 4" thru 12" Size Range: 4" thru 12" Fia. 134 Heavy Duty Beam Clamp Fia. 218 Malleable Beam Clamp without Extension Piece Fia. 228 Beam Clamp Fig. 292 & 292L Universal Forged Steel Universal Forged Steel Beam Clamp with Weldless Eve Nut # STRUCTURAL ATTACHMENTS Fig. 55 & 55L Structural Welding Lug Size Range (55): 1/2" thru 33/4" Size Range (55L): 1/2" thru 2" Fig. 54 Two-Hole Welding Beam Lug Size Range: 1/2" thru 21/4" Fig. 66 Welding Beam Attachment Size Range: 3/8" thru 31/2" Fig. 60 Steel Washer Plate Size Range: 3/8" thru 33/4" Fig. 112 & 113 Brace Fitting Complete Size Range: 1" and 11/4" # **U-BOLTS** Standard U-Bolts Size Range: 1/2" thru 36" Plastic Coated U-Bolts Size Range: 1/2" thru 8" Light Weight U-Bolt Size Range: 1/2" thru 10" ### **HANGER RODS & ATTACHMENTS** Fig. 140 & 253 Fig. 142 Fig. 146 Machine Threaded Rods Coach Screw Rods Machine Continuous Thread Threaded on Opposite End Size Range: 1/4" thru 11/2" Threaded on Both Ends Size Range: 3/8" thru 1/2" Size Range: 3/8" thru 5" Fig. 248X Fig. 248 Fig. 278 Fig. 278X Eye Rod Not Welded Linked Eye Rods Welded Eye Rod Welded Linked Eye Rods Size Range: 3/8" thru 21/2" Fig. 136: 🐠 🖘 Fig. 136R: (4) Fig. 135 & 135E Fig. 136 & 136R Fig. 148 Fig. 114 Straight Rod Coupling Rod with Eye End Straight Rod Coupling Turnbuckle Adjuster Size Range: 23/4" thru 5" Size Range: 1/4" thru 1" Size Range: 1/4" thru 1" Size Range: 1/4" thru 3/4" Fig. 110R Fig. 157 Fig. 290 Fig. 299 Socket, Rod Threaded Weldless Eye Nut Extension Piece Forged Steel Clevis Size Range: 1/4" thru 7/8" Size Range: 3/8" thru 7/8" Size Range: 3/8" thru 21/2" Size Range: 3/8" thru 4" Fig. 230 Fig. 233 Fig. 291 Machine Bolts and Hex Nuts Turnbuckle Turnbuckle Clevis Pin with Cotters Size Range: 3/8" thru 21/2" Size Range: 11/4" thru 5" Size Range: 1/2" thru 4" Fig. 262 Strap Short Size Range: 1/2" thru 4" One-Hole Clamp Size Range: 3/8" thru 4" **STRAPS** Fig. 243 Pipe Strap Fig. 244 Pipe Strap Size Range: 1/2" thru 6" pipe Size Range: 1/2" thru 6" pipe CONCRETE INSERTS & ATTACHMENTS # C US USTED Fig. 152 Screw Concrete Insert Size Range: 3/8" thru 7/8" Fig. 282 Universal Concrete Insert Size Range: 3/8" thru 7/8" Fig. 281 Wedge Type Conrete Insert Size Range: 1/4" thru 7/8" Fig. 285 Light Weight Concrete Insert Size Range: 1/4" thru 5/8" Fig. 286 Iron Cross Size Range: Size Range: Size Range: 3/s" thru 11/2" Size Range: 3/s" Concrete Single Lug Plate Size Range: 1/2" thru 2" Concrete Clevis Plate Size Range: 3/8" thru 13/4" Concrete Rod Attachment Plate Size Range: 3/8" thru 11/4" # **PIPE SUPPORTS** Type A, B, and C Pipe Stanchion Size Range: 2" thru 18" Fig. 63 Type A, B, and C Pipe Stanchion Size Range: 21/2" thru 42" Fig. 192 Adjustable Pipe Saddle Size Range: 2" thru 12" Adjustable Pipe Saddle with U-Bolt Size Range: 2" thru 12" Fig. 258 Pipe Stanchion Saddle Size Range: 4" thru 36" Fig. 264 Adjustable Pipe Saddle Support Size Range: 21/2" thru 36" Fig. 265 Adjustable Pipe Saddle Support with U-Bolt Size Range: 4" thru 36" Fig. 259 Pipe Saddle Support with U-Bolt Size Range: 4" thru 36" # **CEILING PLATES** Fig. 127 Plastic Ceiling Plate Size Range: 3/8" and 1/2" Cast Iron Ceiling
Plate Size Range: 1/2" thru 8" Fig. 128R Rod Threaded, Ceiling Flange Size Range: 3/8" and 1/2" Fig. 153 Pipe Hanger Flange Size Range: 3/8" thru 3/4" ### PIPE ROLLS Fia. 177 Adjustable Pipe Roll Support Size Range: 1" thru 30" Fig. 171 Single Pipe Roll Size Range: 1" thru 30" Fia. 178 Spring Cushion Hanger Fia. 181 Adjustable Steel Yoke Pipe Roll Size Range: 21/2" thru 24" Fia. 175 Roller Chair Size Range: 2" thru 30" pipe Fig. 277 Pipe Roll and Base Plate Size Range: 2" thru 24" Fig. 271 Pipe Roll Stand Size Range: 2" thru 42" Fig. 274, 274P & 275 Adjustable Pipe Roll Stand Size Range: 2" thru 42" ### **PIPE GUIDES & SLIDES** Fig. 255 Pipe Alignment Guide and insulation thickness of 1" thru 4" Fig. 256 Pipe Alignment Guide Size Range: 1" thru 24" pipe Size Range: 1" thru 24" pipe and insulation thickness of 1" thru 4" Fig. 257 & 257A Size Range: All sizes within maximum load rating Fig. 436 & 436A Structural Tee Slide Assembly Fabricated Tee Slide Assembly Size Range: All sizes within maximum load rating Fig. 439 & 439A Structural "H" Slide Assembly, Complete Size Range: 6" thru 36" Fig. 432 Special Clamp Size Range: 2" thru 24" Fig. 212 Medium Pipe Clamp Size Range: 2" thru 30" # **PIPE SHIELDS & SADDLES** Fig. 167 Insulation Protection Shield Size Range: 1/2" thru 24" pipe with up to 2" thick insulation Fig. 168 Rib-Lok Shield Size Range: 1/2" thru 8" pipe or copper tube with up to 2" thick insulation Fig. 160 to 166A Pipe Covering Protection Saddle Size Range: 3/4" thru 36" ### SWAY BRACE - SIESMIC Pipe Brace Clamps • Structural Attachments • Sway Brace Attachment • Restraints # Alignment of Pipe Proper alignment is important if a piping system is to be correctly fabricated. Poor alignment may result in welding difficulties and a system that does not function properly. Welding rings may be employed to assure proper alignment as well as the correct welding gap. In addition to using welding rings, some simple procedures can be followed to assist the pipe fitter. Below and on the following page are alignment procedures commonly used by today's craftsmen. ### Pipe-to-Pipe - 1. Level one length of pipe using spirit level. - 2. Bring lengths together leaving only small welding gap. - Place spirit level over both pipes as shown and maneuver unpositioned length until both are level. - 4. Tack weld top and bottom. - 5. Rotate pipe 90°. - 6. Repeat procedure. ### 45° Elbow-to-Pipe - 1. Level pipe using spirit level. - 2. Place fitting to pipe leaving small welding gap. - 3. Place 45° spirit level on face of elbow and maneuver elbow until bubble is centered. - 4. Tack weld in place. ### 90° Elbow-to-Pipe - 1. Level pipe using spirit level. - 2. Place fitting to pipe leaving small welding gap. - 3. Place spirit level on face of elbow and maneuver elbow until level. - 4. Tack weld in place. ### Tee-to-Pipe - 1. Level pipe using spirit level. - 2. Place tee to pipe leaving small welding gap. - Place spirit level on face of tee and maneuver tee until level. - 4. Tack weld in place. ### Flange-to-Pipe - 1. Bring flange to pipe end leaving small welding gap. - 2. Align top two holes of flange with spirit level. - 3. Tack weld in place. - 4. Center square on face of flange as shown. - 5. Tack weld in place. - 6. Check sides in same way. # Jig for Small Diameter Piping The jig is made from channel iron 3' 9" long. Use 1/8" x 11/2" for pipe sizes 11/4" thru 3"; $\frac{1}{8}$ " x $\frac{3}{4}$ " for sizes 1" or smaller. - 1. Cut out 90° notches about 9" from end. - Heat bottom of notch with torch. - 3. Bend channel iron to 90° angle and weld sides. - 4. Place elbow in jig and saw half thru sides of channel iron as shown. Repeat this step with several elbows so jig may be used for different operations. - 5. A used hack saw blade placed in notch as shown will provide proper welding gap. | TAP A | ND DRILL S | SIZES* | |----------|-------------|-------------------------------| | Tap Size | Threads/In. | Drill Size | | 1/4 | 20 | 7 | | 5/16 | 18 | F | | 3/8 | 16 | 5/16 | | 7/16 | 14 | U | | 1/2 | 13 | ²⁷ / ₆₄ | | 9/16 | 12 | 31/64 | | 5/8 | 11 | 17/32 | | 3/4 | 10 | 21/32 | | 7/8 | 9 | 49/64 | | 1 | 8 | 7/8 | | 11/8 | 7 | 63/64 | | 11/4 | 7 | 17/64 | | 13//8 | 6 | 17/32 | | 11/2 | 6 | 111/32 | | 13/4 | 5 | 1 %16 | | 2 | 41/2 | 125/32 | | DRILL SIZE | S FOR NPT | PIPE IAPS | |------------|--------------------------------|------------| | Tap Size | Threads/In. | Drill Dia. | | 1/8 | 27 | R | | 1/4 | 18 | 7/16 | | 3/8 | 18 | 37/64 | | 1/2 | 14 | 23/32 | | 3/4 | 14 | 59/64 | | 1 | 111/2 | 15/32 | | 11/4 | 11 ¹ / ₂ | 11/2 | | 11/2 | 11 ¹ / ₂ | 147/64 | | 2 | 111/2 | 27/32 | | 21/2 | 8 | 25/8 | | 3 | 8 | 31/4 | | 31/2 | 8 | 33/4 | | 4 | 8 | 41/4 | ^{*}Unified National Coarse # Symbols for Pipe Fittings | | Flanged | Screwed | Bell &
Spigot | Welded | Soldered | |-----------------------|---------|----------|-----------------------|--|---| | Bushing
(Reducing) | | — | 6 € 4 | мķ | 4 | | Сар | | | | | | | Cross
(Reducing) | 6 4 6 | 6 4 6 | 6 4 6 | 6××2×6 | 6 0 6 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Cross
(Straight) | ### | +++ | + | *** | 0 | | Crossover | | +^+ | } ^€ | | | | Elbow - 45° | ¥ | + | (X | * | | | Elbow - 90° | # | + | | \star | • | | Elbow - Turned Down | 0# | 0+ | $\bigcirc \leftarrow$ | $\bigcirc \times$ | $\bigcirc \diamond$ | | Elbow - Turned Up | 0# | <u>+</u> | ⊙ ← | $\odot \times$ | • | | Elbow - Base | + | + | | | | | Elbow - Double Branch | ### | +++ | | | | | Elbow - Long Radius | + | + | | | | | Elbow - Reducing | 4 2 | 4 2 | | ************************************** | 4 | | | | | Dall 9 | | | |--------------------------------------|-----------|-------------|------------------|--------------|---------------| | | Flanged | Screwed | Bell &
Spigot | Welded | Soldered | | Elbow - Side Outlet
(Outlet Down) | # | # | 7 | | | | Elbow - Side Outlet
(OutletUp) | ** | + | ○ ← | | | | Elbow - Street | | t | | | | | Joint - Connecting Pipe | | + | \leftarrow | \times | \rightarrow | | Joint - Expansion | #=# | | | * | | | Lateral | *** | †× | \\ | ** | | | Orifice Plate | - - | | | | | | Reducing Flange | 10- | | | | | | Plug - Bull | | | - | | | | Plug - Pipe | | + | -(| | | | Reducer - Concentric | # | >+ | → | * | -0>>> | | Reducer - Eccentric | +>+ | - | >> | * | 4 | | Valve - Gate
Angle Gate
(Plan) | GH | GJ - | | G | | # Symbols for Pipe Fittings Continued | | Flanged | Screwed | Bell &
Spigot | Welded | Soldered | |---|--|--|-------------------|---------------|-------------| | Valve - Globe
Angle Globe
(Elevation) | Tranged | JCTEWED TO THE PROPERTY OF | Spigot | Weided | T b | | Valve - Globe
(Plan) | ∞ # | % | | ∞ ⊁ | O | | Valve (Auto) - By-Pass | * | | | | | | Valve (Auto) - Governor Operated | ±
 | | | | | | Valve - Reducing | * | | | | | | Valve - Check
(Straight Way) | * | * | → ← | * * | ф
ф | | Valve - Cock | H | $\neg\Box\vdash$ | >□∈ | ¥Ūĸ | d ∏þ | | Valve - Diaphragm | - - - - - - - - - - - - - - | -\$- | | | | | Valve - Float | | - | | -* <u>***</u> | - 4 | | Valve - Gate* | | ->>- | >> | -*><\rangle | -d>
-b- | | Valve - Gate
Motor Operated | | | | *** | | | Valve - Globe | +><+ | ->< | >> < | *> | -e>×(b- | | Valve - Globe
Motor Operated | M | | | * | | ^{*}Also used for General Stop Valve when amplified by specification. | | Flanged | Screwed | Bell &
Spigot | Welded | Soldered | |-----------------------------|---------|--|-------------------|--
-----------------| | Valve - Angle
Hose Angle | | | | | | | Valve - Hose Gate | +>< | - >> | | | | | Valve - Hose Globe | +>< | ->> | | | | | Valve - Lockshield | T- | -J- | | | -d\ | | Valve - Quick Opening | | ————————————————————————————————————— | | *** | -0>- | | Valve - Saftey | +15/4+ | -15f1- | → | -X5/X- | -0\fb- | | Sleeve | | | →← | * * | | | Tee - Straight | ### | +++ |) | *** | | | Tee - Outlet Up | #0# | #0# |) ⊙← | *O× | ••• | | Tee - Outlet Down | #0# | +0+ |) ((| XOX | 0 00 | | Tee - Double Sweep | #** | +++ | | | | | Tee - Reducing | 2 | 6 4 | → ₆ 4€ | ************************************** | →
→
6 40 | | Tee - Single Sweep | #=# | +++ | | | | # Symbols for Pipe Fittings Continued | | Flanged | Screwed | Bell &
Spigot | Welded | Soldered | |------------------------------------|----------|----------|------------------|-----------------|------------------| | Tee - Side Outlet
(Outlet Down) | #\$# | +++ |) | | | | Tee - Side Outlet
(Outlet Up) | #5# | +++++ | → | | | | Union | ++- | | | - | - a p | | Angle Valve
Check | F | — | * | * | 4 | | Angle Valve
Gate | 4 | | | * | | | AGA | | |--------------------|---| | | . American National Standards Institute | | | . American Petroleum Institute | | | . American Society of Mechanical Engineers | | | . American Society of Plumbing Engineers | | ASHRAE | . American Society of Heating, Refrigeration, Air Conditioning | | | Engineers | | | . American Society for Testing Material | | | . American Water Works Association | | | . A fitting that joins two different type of pipe together such as | | | PVC to cast iron, or threaded to non-threaded. | | Alloy | . A substance composed of two or more metals or a metal and | | | a compound. | | American Standard | | | | . A type of screw thread commonly used on pipe and fittings. | | Annealing | . A softening treatment consisting of heating carbon or alloy | | | steel or cast iron to an appropriate temperature, holding the | | | temperature for a proper period of time and slowly cooling to | | | ambient temperature. | | | Building Officials Conference of America | | | . Another term for a concentric reducer. | | Bar Plug | . Iron plugs in the 4" thru 8" size that have slotted rather than | | | square heads. Made on to a fitting by use of a steel bar as | | | opposed to a wrench. | | Backflow Preventer | . A device of means to prevent backflow (siphonage) into a | | | potable water system. | | Black Pipe | Non-galvanized steel pipe with a lacquer finish. | | Blind Flange | . A flange used to seal off the end of a pipe. | | Branch | . Any part of the piping system other than a main, riser or stack. | | Bubble Tight | . The condition of a valve seat that prohibits the leakage of | | _ | visible bubbles when closed. | | Bull Head Tee | . The outlet of the tee is larger than the run. | | Bushing | . A pipe fitting for connecting a pipe with a female or larger | | | size fitting: it has a hollow plug with male and female threads. | | Butt Nipple | . A nipple with NPT threads and a shorter overall length than a | | • • | close nipple used when there is a space consideration. A | | | special order item. | | Butt Weld | . A circumferential weld in pipe fusing the abutting pipe walls | | | completely from inside wall to outside wall. | | CI | . Cast Iron | | Carbon Steel Pipe | . Steel pipe that owes its properties mostly to the carbon it | | · | contains. | | Cavitation | . A localized gaseous condition that is found within a liquid stream. | | Chamfer | . A bevel cut on the O.D. of a pipe nipple at 35 degrees (plus/minus | | | 10 degrees) to axis. In a standard nipple both ends are chamfered. | | Chase | . A recess in a wall in which pipes can be run. | | | . A nipple with a length twice the length of a standard pipe thread. | | | . A flange with a sealing surface on one side for connecting to a | | . • | flanged fitting or flanged valve and a pipe thread entrance on | | | the other side. | # Glossary of Terms and Abbreviations Continued | Continuous Weld | | |------------------------|--| | Pipe (CW) | A process for making smaller diameter pipe through 4½" | | | where the entire continuous ribbon of steel is heated in a | | | furnace to the required temperature for forming and fusing. | | | The edges of steel are firmly pressed together by rolls to | | Countary and Place | obtain a forged weld. Heat and pressure form the weld | | Countersunk Plug | A low pattern plug lacking a protruding head rather with a recess or socket, usually in square or hexagon pattern. | | Counling | A pipe fitting with female threads used to connect two pipes | | Coupinia | in a straight line. | | Cross | A pipe fitting with four branches in pairs, each pair on one | | | axis, and the axis at right angles. | | Cross-Connection | Any connection or situation that may allow wastewater to | | | enter the water supply system. | | Cut Lengths | Pipe cut to a specific length as ordered. | | | Drainage, waste and vent system. | | Dielectric Fitting | A fitting having insulating parts or material that prohibits flow | | | of electric current. | | Die | Cutting device used to thread pipe. A set of these attach to | | _ | dieheads and is mounted on a threader. | | Dope | Pasty lubricant used to seal pipe threads prior to making a | | Daniel Continue | threaded pipe connection. | | Drop Ear Elbow | A small elbow having wings cast on each side; the wings have countersunk holes to secure to a ceiling or wall. | | Dry-Pine Valve | A valve used with a dry-pipe sprinkler system where water is | | Dry-ripe valve | on one side of the valve and air is on the other side. When the | | | link in the sprinkler head melts releasing air from the system | | | the valve opens allowing water to flow. | | Durham System | A term used to describe soil or waste systems where all piping | | • | is threaded. | | | Fittings whose openings are offset allowing liquid to flow freely. | | Elbow | A fitting that makes a 90 degree angle between adjacent pipes | | | unless another angle is specified. | | Electrogalvanizing | A process on bonding a layer of zinc to steel or iron involving | | | electroplating by running a current through a saline/zinc | | Electric Resistance | solution with a zinc anode and a steel or iron conductor. | | | Cold finished pipe made by flat steel is cold shaped into | | weld ripe (ERW) | tubular form and then welded at the seam from heat | | | generated by resistance to the flow of electric current applied | | | through electrical contacts. | | End Connection | The method of connecting the parts of a piping system. | | | Description of piping material indicating thicker than standard. | | | Female iron pipe connection. Standard internal threads on | | | pipe fittings. | | Face to Face Dimension | The dimensions from the face of the inlet port to the face of | | | the outlet port of a fitting or valve. | | Face Bushing | A bushing without the hex head. A low pattern bushing used | | | when a smooth transition is required between fitting and | | | nipple when insulating. Also used for reducing with 300# | | | fittings as recommended by ASME B16.14. | | | The internal thread in pipe fittings, valves, etc A fitting designed to join pipe or tubing by means of pressure | |---------------------|--| | 6 , | or friction. | | Flange Fitting | A fitting which utilizes a radically extended collar for sealing | | | and connection. | | Flange | A ring-shaped plate at the end of a pipe, at right angles to the | | | pipe, provided with holes for bolts to allow fastening the pipe | | Flacu Flacus | to similarly equipped adjoining pipe.
A construction flange with no pressure rating. Used to secure | | rioor riange | structural components, e.g. hand rails, to floors or walls. | | FM | Factory Mutual Engineering Corp. | | | Solid pieces of steel are forced into fitting shapes under very | | | high temperature and pressure and then machined into final form. | | Friction Loss | The loss of pressure caused by the turbulence created in water | | | while traveling through pipe, fittings and valves. | | GAL | | | GALV | | | GPM | | | Galvanic Action | When two dissimilar metals are immersed in the same | | | electrolytic solution and connected electrically there is an | | | interchange of atoms carrying an electric charge between them.
The anode metal with the higher electrode potential corrodes | | | with the cathode protected. | | Galvanized Pine | Steel pipe coated with zinc to resist corrosion. | | | A process where the surface of iron or steel piping or fittings | | | is covered with a layer of zinc. | | Gasket | A flat device usually made of fiber or rubber used to provide a | | | watertight seal between metal joints. | | Groove - Cut | A circumferential groove that has been cut into a segment of | | | pipe. Metal is removed in this process. For use in a grooved- | | " | end piping system. | | Groove - Roll | A circumferential groove that has been forced or swagged into a pipe segment. The metal is displaced inside the pipe. No | | | metal is removed in the process. For use in a grooved-end | | | piping system. | | Ground Joint | Where the parts to be joined are precisely finished and then | | | ground so that the seal is tight. | | Ground Joint Union | A pipe union that has a brass or copper grounding section | | | between the two. | | HVAC | Heating, ventilation and air conditioning | | Half Coupling | A full steel coupling sawed in half. Uses as drain or valve access
 | | ports in steel tanks. Not recognized by industry specification. | | Header | A large pipe from which a number of smaller ones are | | Het Die Calveniaies | connected in line from the side of the large pipe.
The process of coating iron or steel with a layer of zinc by | | Hot Dip Gatvanizing | passing the metal through a molten batch of zinc at a | | | temperature of 450 deg F. | | IAPMO | International Association of Plumbing & Mechanical Officials | | | A series of five standards for developing a total quality | | | management system. Developed by the International | | | Organization for Standardization. | # Glossary of Terms and Abbreviations Continued | ID | Inside diameter | |----------------|---| | | Iron pipe size. Same as NPS. | | | A wye (Y) fitting with an outlet at a 45 degree angle from the run. | | | Leadership in Energy and Environmental Design | | Listed | Equipment or materials included in a list published by an | | | organization that maintains periodic inspection on current | | | production. The listing states that the equipment or material | | | complies with approved standards or has been tested and | | | found suitable for use in a specified manner. | | Listing Agency | An agency accepted by the administrative authority which | | | lists and maintains a periodic inspection program on current | | _ | production. | | Locknut | A malleable nut having a packing recess for seals for use in tank | | | applications. | | MI | | | MIP | Male iron pipe connection. Standard external threads on pipes | | | and fittings. Same as MPT. | | MPT | Male pipe thread where the threads are on the outside of | | Mallackia Issa | pipes and fittings.
Cast iron that is heat-treated to reduce brittleness allowing | | Matteable Iron | the material to stretch slightly. | | Manifold | A fitting with a number of branches in line connecting to | | Maillotu | smaller pipes. Term is interchangeable with "Header." | | Mill Length | Also known as random length; run of mill pipe 16 to 20 feet in | | Witt Length | length. Some pipe is made in double lengths of 30 to 35 feet | | NPS | Nominal pipe size. Same as IPS. | | | Nominal Pipe Taper (American Standard Pipe Taper Thread) | | | Nominal Pipe Straight Coupling (American Standard Straight | | | Coupling Thread) | | NSF | NSF International (formerly National Sanitation Foundation) | | | A colorless, odorless fuel derived from the earth consisting | | | primarily of Methane (CH4). Mercaptans (odors) are added to | | | aid in leak detection. | | Nipple | Nipples are used to connect fittings, extend lines and provide | | | proper threading distances at the right locations. Normally, a | | | nipple is 12" and under in length with a male thread at both ends. | | Normalizing | A heat treatment applied to steel involving heating above the | | | critical range followed by cooling in still air. Performed to | | | refine the crystal structure and eliminate internal stress. | | OD | Outside Diameter. The diameter of a pipe measured from the | | | outside edges. | | O.D. Pipe | Pipe that measures over 14" N.P.S. where the nominal size is | | | the outside diameter and not the inside diameter. | | OEM | Original Equipment Manufacturer | | Offset | A combination of pipe and/or fittings that joins two nearly | | ncı | parallel sections of a pipe line. | | PSI | rounds per square inch | | | Pounds per square inch guage
Pipe immersed into an acid bath for removal of scale, oil, dirt, etc. | | rickung | ripe inimersed into an acid bath for removal of scale, oil, dirt, etc. | | · | Has a male thread and is used to close an opening. Can be made from iron or steel. Cored plugs are for standard applications while solid are for extra heavy applications. The head is typically square pattern. Recessed or countersunk plugs are in square or hexagonal pattern. | |----------------------|--| | , , | Pipe normally threaded both ends in lengths longer than 12"
but shorter than 21. Also referred to as cut pipe. | | | A pipe fitting with inside threads that is larger at one end than the other. | | Right Hand/Left Hand | | | | A nipple with a right hand thread on one side and a left hand thread on the other side. To be used with RH/LH couplings Takes the place of a union in tight areas to permit line connections and disconnections. | | | A water supply pipe that extends vertically one full story or more to carry water to branches. | | SMLS | Seamless pipe | | SPEC | Specification | | STD | | | | Steam at the same temperature as water boils under the same pressure. | | | Numbers assigned to different wall thicknesses of pipe (e.g. 40, 80, 160) | | Screwed Joint | A pipe joint consisting of threaded male and female parts threaded together. | | | Pipe or tube formed by piercing a billet of steel and then rolling. | | | Tee fitting with male threads on one run opening and female threads on the other run opening and outlet. | | Service Pipe | A pipe connecting water or gas mains with a building. | | Short Nipple | A nipple whose length is a little greater than that of two
threaded lengths or somewhat longer than a close nipple so
that it has some unthreaded portion between the two threads. | | Shoulder Nipple | A nipple halfway between the length of a close nipple and a short nipple. | | Socket Weld | A joint made by use of a socket weld fitting which has a prepared female end or socket for insertion of the pipe to which it is welded. | | | An integrated system of underground and overhead piping
designed in accordance with fire protection engineering
standards. | | • | An alloy steel pipe with corrosion-resisting properties, usually imparted by nickle and chromium. | | | A parallel thread that lacks taper. | | Street Elbow | An elbow with male thread on one end and female thread on the other. | | Superheated Steam | Steam at a higher temperature than that at which water would boil under the same pressure. | | Tank Nipple | Nipples are in 6" lengths only. One side has a standard NPT thread while the other has a straight running NPSL thread. Can be used as tank legs or as a threaded port in the side of a steel tank secured with a lock nut. | # Glossary of Terms and Abbreviations Continued | · | Male and female threads designed with a 60 degree angle,
deeper at the end of the pipe or fitting and increasingly
shallower the further they are from the end of the pipe or
fitting. | |------------------|--| | | A fitting that has one side outlet at right angles to the run. | | Thermal Movement | | | of Pipe | The calculated movement, expansion or contraction, in a pipe | | | run or segment there of caused by heating or cooling of the pipe. | | | Underwriter's Laboratories, Inc. | | Union | Basically, two couplings held together with a nut that permit connections and disconnections with little disturbance to pipe sections. Unions commonly have a brass or copper seat ring between the couplings. | | Union - All Iron | A union without a copper, copper alloy or brass seat ring. | | | Used in piping applications where alkalis or acids are present. | | Union Ell | An ell with a male or female union at one end. | | Union Tee | A tee with a male or female union at one end of the run. | | | The thickness of the tubing or pipe wall. | | Waste Nut | A malleable nut with two screw holes on either side of the | | | pipe opening. Used for mounting to equipment panels. | | Water Hammer | The noise and vibration which develops in a piping system when a column of non-compressable liquid flowing through a pipe line at a given pressure and velocity is abruptly stopped. | | W.O.G | Water, oil, gas: refers to the pressure rating of a fitting in | | | ambient temperature. | | WSP | Working steam pressure: Refers to the pressure rating of a | | | fitting at saturated steam temperature. | | Wye (Y) | A fitting that has one side outlet at an angle other than 90 | | | degrees. | | XH | | ### **NOTES** ### **NOTES** # BRANDS OF ANVIL INTERNATIONAL Anvil® product lines include malleable and cast iron fittings, unions and flanges; seamless and welded steel pipe nipples; steel pipe couplings; universal anvilets; forged steel fittings and unions; pipe hangers and supports; threaded rod; and engineered hangers. # *GRUVLOK The Gruvlok® product line consists of couplings for grooved and plain-end fittings, butterfly valves and check valves; flanges; pump protection components; pipe grooving tools; as well as copper and stainless steel system components. # **VINAIT** Anvil-Strut™ products include a complete line of channel in stock lengths of 10 and 20 feet, with custom lengths available upon request. A variety of fittings and accessories are also offered. All products can be ordered in an assortment of finishes and material choices including SupR-Green™, Zinc Trivalent Chromium, pre-galvanized, hot-dipped galvanized, electrogalvanized, aluminum, plain, and stainless steel. The Merit® product line includes a variety of tee-lets and drop nipples for fire protection applications. Most Merit products are UL/ULC Listed, FM Approved, and rated from 175 to 300 psi. CatawissaTM NACE and API approved wing unions for Standard Service are offered in non-pressure seal ends as well as threaded and but weld, and are interchangeable with most leading union manufacturers. Fully traceable and available with complete mill certifications,
Catawissa's oilfield wing union product line includes the standard ball-and-cone design plus our unique Figure 300 Flat Face design, where space and pipe line separation are a consideration. Founded in 1983, NAP is a manufacturer of fabrication equipment, including automatic welders, plasma cut-off equipment, hole cutting equipment, make-on machines and pipe threaders. NAP, innovators of pipe fabrication equipment. The SPF/Anvil™ product line includes a variety of internationally sourced products such as grooved couplings, fittings, cast iron, malleable iron and ductile iron threaded fittings, steel pipe nipples, as well as tee-lets. JB Smith™ is the leading manufacturer of oil country tubular fittings, swages and bull plugs — all meeting API specifications. Offering tubing nipples, casing nipples as well as a full line of traditional line pipe and oil country threads in every schedule, JB Smith is the resource for all your cilifield needs. ### SEMINOLE Tubular Products Steel pipe nipples and steel pipe couplings are manufactured in accordance with the ASTM A733 Standard Specification for Welded and Seamless Carbon Steel and Stainless Steel Pipe Nipples. Steel pipe couplings are manufactured in accordance with the ASTM A865 Standard Specification for Threaded Couplings, Steel, Black or Zinc-Coated [Galvanized] Welded or Seamless, for Use in Steel Pipe Joints. API couplings are manufactured in accordance with the API Specification for line pipe. ### CANVIL Canvil® manufactures low pressure hexagon reducer bushings, as well as plugs and hex caps up to 1" in diameter in various finishes including Oil Treat, Phosphate and Electro Galvanized. In addition, Canvil manufactures A105 hex or round material in class 3000 and 6000 pound, forged steel couplings and bar stock products offered as either as normalized (A105N) or non-normalized (A105) that are fully traceable for mechanicals and chemistry through our MTR program. Anvil EPS-Engineered Pipe Supports are products used to support piping systems under thermal, seismic, and other dynamic loading conditions. The product line encompasses variable spring hangers, constant supports, sway struts and snubbers as well as standard and special design clamps. Anvil EPS brings the highest quality products and innovative engineering solutions to common and uncommon piping system problems. # **CUSTOMER SERVICE CENTERS** ### **UNITED STATES** University Park, IL Tel: 708-885-3000 Fax: 708-534-5441 Toll Free: 1-800-301-2701 Irving, TX Tel: 972-871-1206 Fax: 972-641-8946 Toll Free: 1-800-451-4414 ### CANADA Simcoe, Ontario Tel: 519-426-4551 Fax: 519-426-5509 ### **EUROPE AND MIDDLE EAST** Tel: +31-53-5725570 Fax: +31-53-5725579 International Customer Service Tel: +1-708-885-3000 Fax: +1-708-534-5441 Fax: +1-708-534-5441 # MEXICO, PUERTO RICO AND LATIN AMERICA International Customer Service Tel: +1-708-885-3000 # **U.S. REGIONAL DISTRIBUTION CENTERS** ### UNIVERSITY PARK 750 Central Avenue University Park, IL 60484 ### **IRVING** 1401 Valley View Lane, Suite 150 Irving, TX 75061 ### **COLUMBIA** 800 Malleable Road Columbia, PA 17512 ### **ONTARIO** 1470 S. Vintage Avenue Ontario, CA 91761 # additional INVENTORY LOCATIONS* **UNITED STATES:** Arizona, Colorado, Georgia, Indiana, Massachusetts, Minnesota, Missouri, New York, Tennessee, Texas, Washington and Wisconsin INTERNATIONAL: Ontario, Canada *Inventory varies at locations www.anvilintl.com #030/Printed in USA/@ Copyright 2013 Revision Date: 3.7.13